• Title/Summary/Keyword: Boeing

Search Result 63, Processing Time 0.02 seconds

A Study on the Fuel Saving Method through the Analysis of Fuel Consumption on Domestic Flight - Based on the Fuel Consumption of B737 Aircraft - (국내선 항공기 연료소모량 분석을 통한 연료절감 방안연구 - B737 항공기 연료소모량을 중심으로 -)

  • Choi, Jihun;Lee, Kyung-Han;Kim, Yong-og;Kim, Woong-Yi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.2
    • /
    • pp.24-33
    • /
    • 2022
  • This study analyzed and derived a plan to reduce fuel consumption of domestic aircraft. Specifically, this study tested fuel consumption in the short-distance flights of B737. Fuel consumption was calculated by substituting the simulation variable values into Matlab. The strength of this study is that the actual operating environment was reflected by collecting the B737 flight data. As a result of the study, the domestic fuel consumption rate in the computed flight plan was less than the current fuel consumption rate. Existing limitations of this study is that it was difficult to reflect the various variables constituting the flight environment, and thus there can be errors in the measurement of the fuel consumption. There are two major expected applications from this study. First, applying the plans from this study will lead to a reduction in the amount of fuel and thus provide positive economic effects for commercial airlines. Second, the plan from this study will provide a basis for pilots to predict fuel consumption more accurately. In conclusion, this study proposes a fuel saving plan with useful applications for pilots and airlines.

Numerical investigations on winglet effects on aerodynamic and aeroacoustic performance of a civil aircraft wing

  • Vaezi, Erfan;Fijani, Mohammad Javad Hamedi
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.303-330
    • /
    • 2021
  • The paper discusses the effect of the winglets on the aerodynamic and aeroacoustic performance of Boeing 737-800 aircraft by numerical approach. For this purpose, computational fluid dynamics and fluent commercial software are used to solve the compressible flow governing equations. The RANS method and the K-ω SST turbulence model are selected to simulate the subsonic flow around the wing with acceptable accuracy and low computational cost. The main variables of steady flow around the simple and blended wing in constant atmospheric conditions are computed by numerical solution of governing equations. The solution of the acoustic field has also been accomplished by the broad-band acoustic source model. The results reveal that adding a blended winglet increases the pressure difference near the wingtip,which increases the lift force. Also, the blended winglet reduces the power and magnitude of vorticities around the wingtip, which reduces the wing's drag force. The effects of winglets on aerodynamic forces lead to a 3.8% increase in flight range and a 3.6% increase in the maximum payload of the aircraft. Also, the acoustic power level variables on the surfaces and fields around the wing have been investigated integrally and locally.

A Study on Efficient Training Methods by Analyzing Differences inSpatial Disorientation Recovery according to Pilot Experience (조종사 경력별 공간정위상실(SD) 회복 차이 분석을 통한효율적인 훈련방안에 대한 연구)

  • Se-Jun Kim;Young-Jin Cho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.2
    • /
    • pp.18-24
    • /
    • 2023
  • According to the results of a survey by Boeing, LOC-I (Loss of Control in Flight) was the highest in the number of deaths by fatality accident category in the past 10 years from 2012 to 2021, and the number of deaths worldwide due to LOC-I accidents was 757. It turned out to be the biggest cause of aircraft fatalities, with a figure close to twice the sum of UNK (Unknown or Undetermined), which is the 2nd place, and CFIT (Controlled Flight Into or Toward Terrain), which is the 3rd place. This study set six scenarios related to spatial disorientation that may occur during sensory-dependent flight targeting student pilots and instructor pilots at domestic designated specialized educational institutions using flight simulation training equipment, and in each scenario, the pilot's. The need for SDRT (Spatial Disorientation Recovery Training) is verified by analyzing the flight experience and recovery ability by qualification, and SDRT is repeatedly performed to verify and present the training cycle and time.

Optimization of aircraft fuel consumption and reduction of pollutant emissions: Environmental impact assessment

  • Khardi, Salah
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.311-330
    • /
    • 2014
  • Environmental impact of aircraft emissions can be addressed in two ways. Air quality impact occurs during landings and takeoffs while in-flight impact during climbs and cruises influences climate change, ozone and UV-radiation. The aim of this paper is to investigate airports related local emissions and fuel consumption (FC). It gives flight path optimization model linked to a dispersion model as well as numerical methods. Operational factors are considered and the cost function integrates objectives taking into account FC and induced pollutant concentrations. We have compared pollutants emitted and their reduction during LTO cycles, optimized flight path and with analysis by Dopelheuer. Pollutants appearing from incomplete and complete combustion processes have been discussed. Because of calculation difficulties, no assessment has been made for the soot, $H_2O$ and $PM_{2.5}$. In addition, because of the low reliability of models quantifying pollutant emissions of the APU, an empirical evaluation has been done. This is based on Benson's fuel flow method. A new model, giving FC and predicting the in-flight emissions, has been developed. It fits with the Boeing FC model. We confirm that FC can be reduced by 3% for takeoffs and 27% for landings. This contributes to analyze the intelligent fuel gauge computing the in-flight fuel flow. Further research is needed to define the role of $NO_x$ which is emitted during the combustion process derived from the ambient air, not the fuel. Models are needed for analyzing the effects of fleet composition and engine combinations on emission factors and fuel flow assessment.

Inverse Synthetic Aperture Radar Imaging Using Stepped Chirp Waveform (계단 첩 파형(Stepped Chirp Waveform)을 이용한 ISAR 영상 형성)

  • Lee, Seong-Hyeon;Kang, Min-Suk;Park, Sang-Hong;Shin, Seung-Yong;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.930-937
    • /
    • 2014
  • Inverse synthetic aperture radar (ISAR) images can be generated by radar which radiates the electromagnetic wave to a target and receives signal reflected from the target. ISAR images can be widely used to target detection and recognition. This paper proposed a method of generation of high resolution ISAR images by synthesizing frequency spectrums of each stepped chirp waveform in one burst and sub-sampling in frequency domain. This process is performed over entire bursts during coherent processing interval. Conventional ISAR image generation method using stepped frequency waveform has a severe problem of short unambiguous range, loading to ghost phenomenon. However, this problem can be resolved by the proposed method. In simulations, we generate high resolution ISAR image of the moving target which is Boeing-737 aircraft model composed of several ideal point scatterers.

Developing and Evaluating the Fixture of Vibration Test for a Large Equipment (대형장비의 진동시험치구 개발 및 실험적 평가)

  • 윤용집;최창하;기무현;오승종
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.296-304
    • /
    • 1995
  • 환경시험의 일부인 진동시험은 그 결과를 가지고 장비가 실제 운용하기 전에 진동에 대한 내구성이 있는가를 판단할 수 있는 단 하나의 방법이다. 이런 진동시험을 성공적으로 이끌어 정확한 결론에 도달하기 위해서는 아래 두 가지 문제에 대한 해결이 필수적이라고 생각한다. 첫번째는 '실제 상황을 정확히 반영할 수 있는 진동시험수준의 결정이다.' 진동시험수준이 적절하지 못하면 전체적으로나 부분적으로 과대진동시험(Overtest)을 실시하거나, 과소진동시험(Undertest)을 실시할 수 밖에 없고, 이에 따른 결과도 신뢰도가 떨어진다. 예를 들어, 과대진동시험으로 시험장비가 고장나거나, 과소진동시험으로 시험장비에 이상이 없다고 해서 실제 상황에서 이 장비가 진동에 대하여 만족할 만한 내구성을 갖는다고 누구도 말할 수 없기 때문이다. 두번째는 '정해진 진동시험수준을 진동시험기로부터 시험장비에 얼마나 정확히 전달할 수 있는가?'라는 문제이다. 실제로 원하는 진동시험수준을 한치의 오차없이 정확히 시험장비에 가하는 것은 거의 불가능하다. 특히 시험장비가 대형화 되면 될수록 문제는 더 심각하다. 결론적으로 위에 지적한 두가지 문제의 해결이 성공적인 진동시험의 열쇠이며, 또한 시험결과에 대한 신뢰성을 보장받을 수 있는 길이기 때문이다. 이번 논문에서 다루고자 하는 것은 두번째 문제인 진동시험수준의 정확한 전달을 위하여 진동시험기와 시험장비 사이를 연결해 주는 진동시험치구(Test Fixture) 개발에 관한 것이다. 실제 개발한 치구는 미군사규격(Military-Standard)과 보잉사 규격(Boeing specification) 그리고 샌디아사 규격(Sandia Corporation Standard)에 근거하여 분류하는 분류기준표에서 치구 중 가장 큰 부류(500 pounds 이상)에 속는 것으로, 현재 우리나라에서 보유하고 있는 것 중에 용량이 가장 큰 진동시험기에서 진동시험을 준비하고 있는, 체계에 전원을 공급하는 대형장비의 치구이다. 또한 실 진동시험을 실시하기 전의 모달시험과 예비시험 그리고 실 시험결과를 기술하므로써 제작된 치구의 실험적 평가를 하고자 한다.

  • PDF

A Study on the Improvement Methods on Cabin Safety Actions in Aircraft Accidents -Focused on Cabin Crew Safety Performances & Passenger Perceptions of Cabin Safety Information - (항공기 비상사태에 대한 객실안전조치에 관한 연구 -객실승무원의 안전업무와 승객의 객실안전정보 인식을 중심으로-)

  • Yoo, Kyung-In;Yoo, Kwang-Eui;Lee, Chun-Ki
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.126-136
    • /
    • 2013
  • Aircraft accidents these days, following the mega sizing trend of the aircraft, result in enormous losses of human lives apart from those of property, which cannot be replaced by any means. As most recently, in April 20, 2012, a Boeing 737 passenger plane departed Karachi on an augural flight to Islamabad, Pakistan, crashed close to an express highway on final approach, all 121 passengers and 6 crew members were killed. As such a large number of fatalities have been recorded in aircraft accidents while accident investigation results show that more than 95% of aircraft accidents are now survivable. There are three basic stages in surviving the aircraft accident: surviving the crash impact, the evacuation process and the hostile post evacuation environmental elements. These stages require the cabin crew's expeditious and appropriate actions on the basis of systematic and thorough cabin safety training in order to increase occupants' survivability, along with the passengers' preparedness. In this aspect, this paper examines the issues acting as the impediments to the passenger survival in inflight emergency situations, that are the deficiencies with cabin crew safety training, related performances and the shortcomings in passengers' knowledge on inflight safety information, leading to their inappropriate responses to emergency situations. These issues are analyzed and the root causes are identified, suggesting the resolving countermeasures.

A case study on the Occurrence Category of aircraft accidents and serious incidents in Korea in the 2000's (2000년대 국내 항공기 사고·준사고 발생유형 사례연구)

  • Choi, Young-Jae;Ahn, Jae-Hyung;You, Kyung-In;Park, Jung-Gown
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.119-125
    • /
    • 2013
  • Since year 2001 to the present time, the aircraft accidents and serious incidents in our country have surpassed 150 occurrences. The Boeing has published the statistical summary of commercial jet airplane accidents annually for the past 10 years on the basis of the occurrence categories defined by the CICTT(CAST/ICAO Common Taxonomy Team), and the number of occurrences is in order of loss of control(LOC-I), controlled flight into terrain(CFIT) and runway excursion (RE). Like the NTSB and the EASA, when fatal and non-fatal accidents are aggregated, though fatality rate is low, abnormal runway contact(ARC), system/component failure(SCF-PP/NP), ground handling(RAMP) rank high in the CICTT occurrence categories. With the less occurrence frequency, it is difficult to statistically analyze the aircraft accidents in our country, thus customarily the accidents and the serious incidents on aggregate are consolidated, and the statistical analysis is performed. This study categorizes the accidents and serious incidents to the domestic transportation aircraft in the past 10 years according to the CICTT occurrence categories, that is compared with foreign practices, and the implications have been discussed. From years 2001 through 2010, the accidents to the domestic transportation aircraft occurred in order of system failure(SCF-NP), ARC and power plant failure(SCF-PP), and when the accidents and the serious incidents are consolidated and analyzed, it is verified that a distribution appears similar to the European accident occurrence categories defined from 300 accident occurrence data.

Verification of Winglet Effect and Economic Analysis Using Actual Flight of A321 Sharklet Model (A321 Sharklet 모델의 운항실적을 이용한 윙렛 장착 효과 검증 및 경제성 분석)

  • Jang, Sungwoo;Lee, Youngjae;Kim, Kangwook;Yoo, Jae Leame;Yoo, Kwang Eui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.273-279
    • /
    • 2021
  • Winglets are specialized wingtip devices to reduce induced drag, and they have been installed on Boeing-made aircraft since the 1980s, Airbus has also developed a winglet named 'Sharklet' since 2009 and has started providing them as an option to the A320 Family. The winglet has the effect of improving take-off performance, reducing fuel consumption, increasing payload, and increasing flight distance by reducing the induced drag generated at the tip of the wing. The purpose of this study is to analyze the actual flight data of the sharklet-installed and non-sharklet-installed models of the A321 aircraft to verify the fuel efficiency improvement due to the winglet installation, and to analyze the economic analysis accordingly. Through this, it can be used to determine the winglet installation when introducing an aircraft or to make a decision for upgrading the existing aircraft. To this end, a case study on the aerodynamic characteristics and effects of the winglet installation was conducted, and the economic analysis was verified.

LUAV Software Certification Method using Checklists based on DO-178C (DO-178C 기반 체크리스트를 활용한 무인동력비행장치 소프트웨어 인증 방안)

  • Ji-Hun Kwon;Dong-Min Lee;Kyung-Min Park;Eun-Hee Lee;Sauk-Hoon Im;Yong-Hun Choi;Jong-Whoa Na
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • As seen in the case of the Boeing 737 Max accident, the proportion of aircraft software is rapidly increasing. However, it is vulnerable to safety issues. In case of domestic aircraft software, to operate a Light Unmanned Aerial Vehicle (LUAV) less than an empty weight of 150 kg, safety certification is required for an Ultra-Light Vehicle (ULV). However, software certification procedure is not included. Since the use of LUAVs has increased recently, software verification is required. This paper proposed a checklist of LUAV software that could be applied to LUAV referring DO-178C, an aviation software certification standard. A case study of applying the proposed checklist to the Model-based Development-based Helicopter Flight Control Computer (FCC) project currently used by domestic and foreign advanced companies and institutions was conducted.