• 제목/요약/키워드: Body side slip angle

검색결과 13건 처리시간 0.033초

Yaw Rate 및 Side Slip Angle 추정을 위한 비선형 관측기 설계 (Design of Non-linear Observer to Estimate Yaw Rate and Sidel Slip Angle)

  • 송정훈
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.48-53
    • /
    • 2012
  • A non-linear vehicle model and an observer are designed to observe the yaw rate and the body side slip angle when a vehicle is turning maneuver in this study. The developed vehicle model is a full car model and has fourteen degree of freedom. A Luenberg observer is applied to develop the observer. The vehicle model is validated with a reference result and shows good accordance. The observer is tested on dry asphalt, wet asphalt and snow paved road. The results prove the performance of observer is robust and reliable.

고받음각 초음속 유동에서의 세장형 몸체 주변에 발생하는 비대칭와류에 대한 수치적 연구 (The Numerical Analysis of Asymmetric Vortices around the Slender body at High Angle of Attack Supersonic Flow)

  • 전영진;지영무;김기수;서형석;변영환;이재우
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.335-338
    • /
    • 2007
  • 공대공미사일의 경우 초음속 하에서 고 기동성을 얻기 위하여 고받음각 능력이 요구되어진다. 옆 미끄러짐이 없는 대칭형 세장형 몸체의 경우라도 비대칭 와류는 생성된다. 이러한 비대칭 와류는 불필요한 측력 및 요잉모멘트를 발생시키고 이는 곧 방향 안전성을 저하시킨다. 본 연구는 전산해석을 통하여 초음속유동하에서 세장형 몸체 주변에 발생되는 비대칭와류 모사를 실시하였으며 비대칭 와류의 모사를 위해 선두부에 Bump를 장착하였다. 전산해석 결과 세장형 몸체 주변에 발생하는 비대칭와류를 모사 할 수 있었다.

  • PDF

폭이 좁은 차량의 안정성 향상을 위한 능동형 스티어링 기울임 제어기의 개발 (Development of the Active Steering Tilt Controller for Stability of the Narrow Commuter Vehicles)

  • 소상균
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.107-117
    • /
    • 1998
  • As the traffic congestion and parking problems in urban areas are increased the tall and narrow commuter vehicles have interested as a means to increase the utilization of existing freewa- ys and parking facilities. However, in hard cornering those vehicles could reduce stability against overturning compared to conventional vehicles. This tendency can be mitigated by tilting the body toward the inside of the turn. In this paper those tilting vehicles are considered in which at speed at least, the tilt angle is controlled by steering the front wheels. In other word, if the driver turns the steering wheel the tilt controller automatically steers the road wheel to tilt the body inside of the turn. Also, the dynamic tilting vehicle model with tire slip angles is constructed by adding the roll degree of freedom. Finally, through computer simulation the behaviors of the tilting vehicles are investigated.

  • PDF

AFS 시스템의 새로운 수학적 모델 및 제어기 개발 (Development of New Numerical Model and Controller of AFS System)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.59-67
    • /
    • 2014
  • A numerical model and a controller of Active Front wheel Steer (AFS) system are designed in this study. The AFS model consists of four sub models, and the AFS controller uses sliding mode control and PID control methods. To test this model and controller an Integrated Dynamics Control with Steering (IDCS) system is also designed. The IDCS system integrates an AFS system and an ARS (Active Rear wheel Steering) system. The AFS controller and IDCS controller are compared under several driving and road conditions. An 8 degree of freedom vehicle model is also employed to test the controllers. The results show that the model of AFS system shows good kinematic steering assistance function. Steering ratio varies depends on vehicle velocity between 12 and 24. Kinematic stabilization function also shows good performance because yaw rate of AFS vehicle tracks the reference yaw rate. IDCS shows improved responses compared to AFS because body side slip angle is also reduced. This result also proves that AFS system shows satisfactory result when it is integrated with another chassis system. On a split-m road, two controllers forced the vehicle to proceed straight ahead.

SUV 차량의 전륜 및 후륜 조향 장치를 이용한 통합운동제어시스템 설계 (Development of Integrated Dynamics Control System of SUV Vehicle with Front and Rear Steering System)

  • 송정훈
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.31-37
    • /
    • 2018
  • In order to improve stability and controllability of SUV vehicle, Integrated Dynamics Control system with Steering system (IDCS) was developed. Eight degree of freedom vehicle model and front and rear steering system model were used to design IDCS system. It also employs Fuzzy logic control method to design integrate control system. The performance of IDCS was evaluated with two road conditions and several driving conditions. The result shows that SUV vehicle with IDCS tracked the reference yaw rate under all tested conditions. IDCS reduced the body slip angle also. It represents IDCS improves vehicle stability and steerability.

GPS/INS 를 이용한 차량의 파라미터 추정 (Estimation of vehicle parameters using GPS/INS)

  • 박건홍;장유신;류재헌;박석현;이춘한;홍신표;이만형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1524-1529
    • /
    • 2003
  • In this paper deals with a unique method for measuring vehicle states such as body sideslip angle and tire sideslip angle using GPS velocity information in conjunction with other sensors. A method for integrating Inertial Navigation System (INS) sensors with GPS measurements to provide higher update rate estimates of the vehicle states is presented, and the method can be used to estimate the tire cornering stiffness. The experimental results for the GPS velocity-based sideslip angle measurement and cornering stiffness estimates are compared with the theoretical predictions. From the experimental results, it can be concluded that the proposed method has an advantage for future implementation in a vehicle safety system.

  • PDF

Estimation of vehicle cornering stiffness via GPS/INS

  • Park, Gun-Hong;Chang, Yu-Shin;Ryu, Jae-Heon;Jeong, Seung-Gweon;Song, Hyo-Shin;Park, Seok-Hyun;Lee, Chun-Han;Hong, Sin-Pyo;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1706-1709
    • /
    • 2003
  • This paper demonstrates a unique method for measuring vehicle states such as body sideslip angle and tire sideslip angle using Global Positioning System(GPS) velocity information in conjunction with other sensors. A method for integrating Inertial Navigation System (INS) sensors with GPS measurements to provide higher update rate estimates of the vehicle states is presented, and the method can be used to estimate the tire cornering stiffness. The experimental results for the GPS velocity-based sideslip angle measurement. From the experimental results, it can be concluded that the proposed method has an advantage for future implementation in a vehicle safety system.

  • PDF

시변절환면을 갖는 슬라이딩 모드에 의한 차량의 요-모멘트 제어 (Control of Vehicle Yaw Moment using Sliding Mode with Time-Varying Switching Surface)

  • 이창노;양현석;박영필
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.666-672
    • /
    • 2003
  • This paper presents a design of the controller for vehicle lateral dynamics using active yaw moment. Vehicle lateral motion is incorporated with directional controllability and stability. These are conflicting each other from the view of vehicle handling performance. To compromise the trade-off between these two aspects, we suggest a new control algorithm based on the sliding mode with time-varying switching surface according to the body side slip angle. The controller can deal with the nonlinear region in vehicle driving condition and be robust to the parameter uncertainties in the plant model. Control performance is evaluated from the simulation for the vehicle of real parameters on the road with various tire-road frictions.

시변 절환면을 갖는 슬라이딩 모드에 의한 차량의 횡방향 운동제어 (Control of Vehicle Lateral Dynamics using Sliding Mode with Time-Varying Switching Surface)

  • 이창로;양현석;박영필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.458-463
    • /
    • 2000
  • This paper presents a design of the controller for vehicle lateral dynamics using active yaw moment. Vehicle lateral motion is incorporated with directional controllability and stability. These are conflicting each other from the view of vehicle handling performance. To compromise the trade-off between these two aspects, we suggest a new control algorithm based on the sliding mode with time-varying switching surface according to the body side slip angle. The controller can deal with the nonlinear region in vehicle driving and be robust to the parameter uncertainties in the plant model. Control performance was evaluated from the simulation.

  • PDF

모델 예측 제어 기법을 이용한 토크벡터링과 후륜조향 통합 제어 (Integrated Control of Torque Vectoring and Rear Wheel Steering Using Model Predictive Control)

  • 차현수;김자유;이경수
    • 자동차안전학회지
    • /
    • 제14권4호
    • /
    • pp.53-59
    • /
    • 2022
  • This paper describes an integrated control of torque vectoring and rear wheel steering using model predictive control. The control objective is to minimize the yaw rate and body side slip angle errors with chattering alleviation. The proposed model predictive controller is devised using a linear parameter-varying (LPV) vehicle model with real time estimation of the varying model parameters. The proposed controller has been investigated via computer simulations. In the simulation results, the performance of the proposed controller has been compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the lateral stability and handling performance.