• Title/Summary/Keyword: Body side slip angle

Search Result 13, Processing Time 0.039 seconds

Design of Non-linear Observer to Estimate Yaw Rate and Sidel Slip Angle (Yaw Rate 및 Side Slip Angle 추정을 위한 비선형 관측기 설계)

  • Song, Jeong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.48-53
    • /
    • 2012
  • A non-linear vehicle model and an observer are designed to observe the yaw rate and the body side slip angle when a vehicle is turning maneuver in this study. The developed vehicle model is a full car model and has fourteen degree of freedom. A Luenberg observer is applied to develop the observer. The vehicle model is validated with a reference result and shows good accordance. The observer is tested on dry asphalt, wet asphalt and snow paved road. The results prove the performance of observer is robust and reliable.

The Numerical Analysis of Asymmetric Vortices around the Slender body at High Angle of Attack Supersonic Flow (고받음각 초음속 유동에서의 세장형 몸체 주변에 발생하는 비대칭와류에 대한 수치적 연구)

  • Jeon, Young-Jin;Ji, Young-Moo;Kim, Ki-Su;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.335-338
    • /
    • 2007
  • In the case of an antiaircraft missile, high angle of attack flight capability is required to get the agile maneuverability in a supersonic flow. Even through a symmetric slender body does not have side slip, asymmetric vortex is generated at high angle of attack conditions. This asymmetric vortex produces unnecessary side force and yawing moment; hence, these effects deteriorate directional stability. In this study, the numerical analysis of asymmetric vortices around the slender body was conducted at high angle of attack supersonic flow. In order to simulate the vortices, a bump is installed on the nose of the slender body. As a result of the numerical analysis, the asymmetric vortices around the slender body could be simulated.

  • PDF

Development of the Active Steering Tilt Controller for Stability of the Narrow Commuter Vehicles (폭이 좁은 차량의 안정성 향상을 위한 능동형 스티어링 기울임 제어기의 개발)

  • 소상균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • As the traffic congestion and parking problems in urban areas are increased the tall and narrow commuter vehicles have interested as a means to increase the utilization of existing freewa- ys and parking facilities. However, in hard cornering those vehicles could reduce stability against overturning compared to conventional vehicles. This tendency can be mitigated by tilting the body toward the inside of the turn. In this paper those tilting vehicles are considered in which at speed at least, the tilt angle is controlled by steering the front wheels. In other word, if the driver turns the steering wheel the tilt controller automatically steers the road wheel to tilt the body inside of the turn. Also, the dynamic tilting vehicle model with tire slip angles is constructed by adding the roll degree of freedom. Finally, through computer simulation the behaviors of the tilting vehicles are investigated.

  • PDF

Development of New Numerical Model and Controller of AFS System (AFS 시스템의 새로운 수학적 모델 및 제어기 개발)

  • Song, Jeonghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.59-67
    • /
    • 2014
  • A numerical model and a controller of Active Front wheel Steer (AFS) system are designed in this study. The AFS model consists of four sub models, and the AFS controller uses sliding mode control and PID control methods. To test this model and controller an Integrated Dynamics Control with Steering (IDCS) system is also designed. The IDCS system integrates an AFS system and an ARS (Active Rear wheel Steering) system. The AFS controller and IDCS controller are compared under several driving and road conditions. An 8 degree of freedom vehicle model is also employed to test the controllers. The results show that the model of AFS system shows good kinematic steering assistance function. Steering ratio varies depends on vehicle velocity between 12 and 24. Kinematic stabilization function also shows good performance because yaw rate of AFS vehicle tracks the reference yaw rate. IDCS shows improved responses compared to AFS because body side slip angle is also reduced. This result also proves that AFS system shows satisfactory result when it is integrated with another chassis system. On a split-m road, two controllers forced the vehicle to proceed straight ahead.

Development of Integrated Dynamics Control System of SUV Vehicle with Front and Rear Steering System (SUV 차량의 전륜 및 후륜 조향 장치를 이용한 통합운동제어시스템 설계)

  • Song, Jeonghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.31-37
    • /
    • 2018
  • In order to improve stability and controllability of SUV vehicle, Integrated Dynamics Control system with Steering system (IDCS) was developed. Eight degree of freedom vehicle model and front and rear steering system model were used to design IDCS system. It also employs Fuzzy logic control method to design integrate control system. The performance of IDCS was evaluated with two road conditions and several driving conditions. The result shows that SUV vehicle with IDCS tracked the reference yaw rate under all tested conditions. IDCS reduced the body slip angle also. It represents IDCS improves vehicle stability and steerability.

Estimation of vehicle parameters using GPS/INS (GPS/INS 를 이용한 차량의 파라미터 추정)

  • Park, Gun-Hong;Chang, Yu-Shin;Ryu, Jae-Heon;Park, Seok-Hyun;Lee, Chun-Han;Hong, Sin-Pyo;Lee, Man-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1524-1529
    • /
    • 2003
  • In this paper deals with a unique method for measuring vehicle states such as body sideslip angle and tire sideslip angle using GPS velocity information in conjunction with other sensors. A method for integrating Inertial Navigation System (INS) sensors with GPS measurements to provide higher update rate estimates of the vehicle states is presented, and the method can be used to estimate the tire cornering stiffness. The experimental results for the GPS velocity-based sideslip angle measurement and cornering stiffness estimates are compared with the theoretical predictions. From the experimental results, it can be concluded that the proposed method has an advantage for future implementation in a vehicle safety system.

  • PDF

Estimation of vehicle cornering stiffness via GPS/INS

  • Park, Gun-Hong;Chang, Yu-Shin;Ryu, Jae-Heon;Jeong, Seung-Gweon;Song, Hyo-Shin;Park, Seok-Hyun;Lee, Chun-Han;Hong, Sin-Pyo;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1706-1709
    • /
    • 2003
  • This paper demonstrates a unique method for measuring vehicle states such as body sideslip angle and tire sideslip angle using Global Positioning System(GPS) velocity information in conjunction with other sensors. A method for integrating Inertial Navigation System (INS) sensors with GPS measurements to provide higher update rate estimates of the vehicle states is presented, and the method can be used to estimate the tire cornering stiffness. The experimental results for the GPS velocity-based sideslip angle measurement. From the experimental results, it can be concluded that the proposed method has an advantage for future implementation in a vehicle safety system.

  • PDF

Control of Vehicle Yaw Moment using Sliding Mode with Time-Varying Switching Surface (시변절환면을 갖는 슬라이딩 모드에 의한 차량의 요-모멘트 제어)

  • Lee, Chang-Ro;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.666-672
    • /
    • 2003
  • This paper presents a design of the controller for vehicle lateral dynamics using active yaw moment. Vehicle lateral motion is incorporated with directional controllability and stability. These are conflicting each other from the view of vehicle handling performance. To compromise the trade-off between these two aspects, we suggest a new control algorithm based on the sliding mode with time-varying switching surface according to the body side slip angle. The controller can deal with the nonlinear region in vehicle driving condition and be robust to the parameter uncertainties in the plant model. Control performance is evaluated from the simulation for the vehicle of real parameters on the road with various tire-road frictions.

Control of Vehicle Lateral Dynamics using Sliding Mode with Time-Varying Switching Surface (시변 절환면을 갖는 슬라이딩 모드에 의한 차량의 횡방향 운동제어)

  • Lee, Chang-Ro;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.458-463
    • /
    • 2000
  • This paper presents a design of the controller for vehicle lateral dynamics using active yaw moment. Vehicle lateral motion is incorporated with directional controllability and stability. These are conflicting each other from the view of vehicle handling performance. To compromise the trade-off between these two aspects, we suggest a new control algorithm based on the sliding mode with time-varying switching surface according to the body side slip angle. The controller can deal with the nonlinear region in vehicle driving and be robust to the parameter uncertainties in the plant model. Control performance was evaluated from the simulation.

  • PDF

Integrated Control of Torque Vectoring and Rear Wheel Steering Using Model Predictive Control (모델 예측 제어 기법을 이용한 토크벡터링과 후륜조향 통합 제어)

  • Hyunsoo, Cha;Jayu, Kim;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • This paper describes an integrated control of torque vectoring and rear wheel steering using model predictive control. The control objective is to minimize the yaw rate and body side slip angle errors with chattering alleviation. The proposed model predictive controller is devised using a linear parameter-varying (LPV) vehicle model with real time estimation of the varying model parameters. The proposed controller has been investigated via computer simulations. In the simulation results, the performance of the proposed controller has been compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the lateral stability and handling performance.