• 제목/요약/키워드: Body sensor network

검색결과 159건 처리시간 0.028초

Real Time Drowsiness Detection by a WSN based Wearable ECG Measurement System

  • Takalokastari, Tiina;Jung, Sang-Joong;Lee, Duk-Dong;Chung, Wan-Young
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.382-387
    • /
    • 2011
  • Whether a person is feeling sleepy or reasonably awake is important safety information in many areas, such as humans operating in traffic or in heavy industry. The changes of body signals have been mostly researched by looking at electroencephalogram(EEG) signals but more and more other medical signals are being examined. In our study, an electrocardiogram(ECG) signal is measured at a sampling rate of 100 Hz and used to try to distinguish the possible differences in signal between the two states: awake and drowsy. Practical tests are conducted using a wireless sensor node connected to a wearable ECG sensor, and an ECG signal is transmitted wirelessly to a base station connected to a server PC. Through the QRS complex in the ECG analysis it is possible to obtain much information that is helpful for diagnosing different types of cardiovascular disease. A program is made with MATLAB for digital signal filtering and graphing as well as recognizing the parts of the QRS complex within the signal. Drowsiness detection is performed by evaluating the R peaks, R-R interval, interval between R and S peaks and the duration of the QRS complex..

Bio-inspired neuro-symbolic approach to diagnostics of structures

  • Shoureshi, Rahmat A.;Schantz, Tracy;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • 제7권3호
    • /
    • pp.229-240
    • /
    • 2011
  • Recent developments in Smart Structures with very large scale embedded sensors and actuators have introduced new challenges in terms of data processing and sensor fusion. These smart structures are dynamically classified as a large-scale system with thousands of sensors and actuators that form the musculoskeletal of the structure, analogous to human body. In order to develop structural health monitoring and diagnostics with data provided by thousands of sensors, new sensor informatics has to be developed. The focus of our on-going research is to develop techniques and algorithms that would utilize this musculoskeletal system effectively; thus creating the intelligence for such a large-scale autonomous structure. To achieve this level of intelligence, three major research tasks are being conducted: development of a Bio-Inspired data analysis and information extraction from thousands of sensors; development of an analytical technique for Optimal Sensory System using Structural Observability; and creation of a bio-inspired decision-making and control system. This paper is focused on the results of our effort on the first task, namely development of a Neuro-Morphic Engineering approach, using a neuro-symbolic data manipulation, inspired by the understanding of human information processing architecture, for sensor fusion and structural diagnostics.

Accurate and Energy Efficient ECG Analysis Method for ECG Monitoring System

  • Zeng, Min;Lee, Jeong-Gun;Chung, Il-Yong;Lee, Jeong-A
    • 한국통신학회논문지
    • /
    • 제37권5C호
    • /
    • pp.403-409
    • /
    • 2012
  • This paper proposes an energy efficient ECG monitoring system by putting some intelligence on the sensor node to reduce the number of transmissions. The sensor node is mostly put into the processing mode and just connects the base station when necessary. Therefore, the transmission energy is greatly reduced while the energy for processing is increased a little bit. Our proposed ECG analysis method classifies ECG cycles by computing the Euclidean distance between the sensed ECG cycle and the reference ECG cycle. This work is a detailed and full explanation of our former work. Extended experimental results show that the proposed trade is very effective in saving energy and the Euclidean distance based classification method is accurate. Furthermore, the PowerTOSSIM energy simulation method is also demonstrated as very accurate in evaluating the energy consumption of the sensor node in our application scenario.

Performance Analysis of Multiple-Hop Wireless Body Area Network

  • Hiep, Pham Thanh;Hoang, Nguyen Huy;Kohno, Ryuji
    • Journal of Communications and Networks
    • /
    • 제17권4호
    • /
    • pp.419-427
    • /
    • 2015
  • There have been increases in the elderly population worldwide, and this has been accompanied by rapid growth in the health-care market, as there is an ongoing need to monitor the health of individuals. Wireless body area networks (WBANs) consist of wireless sensors attached on or inside the human body to monitor vital health-related problems, e.g., electrocardiograms (ECGs), electroencephalograms (EEGs), and electronystagmograms (ENGs). With WBANs, patients' vital signs are recorded by each sensor and sent to a coordinator. However, because of obstructions by the human body, sensors cannot always send the data to the coordinator, requiring them to transmit at higher power. Therefore, we need to consider the lifetime of the sensors given their required transmit power. In the IEEE 802.15.6 standard, the transmission topology functions as a one-hop star plus one topology. In order to obtain a high throughput, we reduce the transmit power of the sensors and maintain equity for all sensors. We propose the multiple-hop transmission for WBANs based on the IEEE 802.15.6 carrier-sense multiple-access with collision avoidance (CSMA/CA) protocol. We calculate the throughput and variance of the transmit power by performing simulations, and we discuss the results obtained using the proposed theorems.

긴급환자 상황인식 및 분석을 위한 무선 ECG모니터링 시스템 (A Wireless ECG monitoring System for Application in Life Emergency Event Detection and Analysis)

  • ;이대석;정완영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.421-425
    • /
    • 2006
  • 헬스케어와 무선 기술의 접목은 새로운 생체신호 모니터링 방법과 환자의 이동성 및 편의성을 제공하며 더 나은 방법으로 환자를 돌볼 수 있으며 이러한 장점으로 인해 최근 무선기술을 이용한 ECG 모니터링 및 계측 시스템이 개발되고 있다. 본 논문에서는 중요한 생체신호 중 가장 중요한 신호의 하나인 ECG 신호를 무선센서네트워크를 이용하여 무선으로 받은 후, 이를 서버컴퓨터에서 의사, 간호사 또는 환자의 보호자에게 진단의 기초자료로 제공할 수 있게 빈맥, 서맥, 동정지와 같은 비정상적인 ECG신호를 판단하는 ECG 모니터링 시스템을 구현하였다. 신체에서 계측된 ECG신호는 무선으로 서버와 RS-232로 연결된 베이스스테이션으로 전송되고 서버는 비정상적인 ECG 신호를 검사하여 저장 및 모니터링을 위해 PC/PDA로 데이터를 전송하며, 이러한 시스템을 활용하여 의료비 절감 및 더 편리한 의료서비스를 받을 수 있을 것으로 예상된다.

  • PDF

Global Healthcare Information System

  • Singh, Dhananjay;Lee, Hoon-Jae;Chung, Wan-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.365-368
    • /
    • 2008
  • This paper presents a new concept of IP-based wireless sensor networks and also introduces a routing protocol that is based on clustering for global healthcare information system. Low-power wireless personal area networks (LoWPANs) conform the standard by IEEE 802.15.4-2003 to IPv6 that makes 6lowpan. It characterized by low bit rate, low power, and low cost as well as protocol for wireless connections. The 6lowpan node with biomedical sensor devices fixed on the patient body area network that should be connected to the gateway in personal area network. Each 6lowpan nodes have IP-addresses that would be directly connected to the internet. With the help of IP-address service provider can recognize or analysis patient biomedical data from anywhere on globe by internet service provider equipments such as cell phone, PDA, note book. The system has been evaluated by technical verification, clinical test, user survey and current status of patient. We used NS-2.33 simulator for our prototype and also simulate the routing protocols. The result shows the performance of biomedical data packets in multi-hope routing as well as represents the topology of the networks.

  • PDF

유비쿼터스 환경에서 모바일을 이용한 원격 헬스케어 (Mobile Remote Healthcare in Ubiquitous Computing Environments)

  • 강은영;임용순
    • 한국인터넷방송통신학회논문지
    • /
    • 제8권6호
    • /
    • pp.55-61
    • /
    • 2008
  • 본 논문에서는 의학적 센서 모듈과 무선 통신 기술이 결합된 멀티 에이전트 기반 원격 헬스케어 시스템을 제안한다. 제안된 헬스케어 시스템은 멀리 떨어진 곳에서도 환자 모니터링, 의사의 진단과 처방, 환자와 의사, 병원 관계자 사이의 정보 교환 등 폭 넓은 서비스를 지원한다. 또한 Body Area Network(BAN)과 병원의 의사와 관계자들과 연결되며, 이에 대한 유기적이고 병원 서버의 중앙 부하를 감소시키는 확장된 JADE기반 헬스케어 시스템을 디자인하고 개발했다. 에이전트들은 센서로부터 수집된 환자의 정보를 수집, 통합, 전달하고 모바일(PDA)에 표현하기도 한다. 제안된 시스템은 모바일(PDA)과 같은 모바일 디바이스 등을 통하여 섬과 같이 병원과 멀리 떨어진 지역에서도 긴급 상황을 판단하여 원격으로 처리할 수 있다는 장점을 얻게 된다. 또한 환자(노인)의 상태를 실시간으로 모니터링 함으로써 요구되는 시간과 비용을 많이 단축하게 되고, 의료 서비스의 지원에 대한 효율성을 높이게 된다.

  • PDF

Integrated Power Optimization with Battery Friendly Algorithm in Wireless Capsule Endoscopy

  • Mehmood, Tariq;Naeem, Nadeem;Parveen, Sajida
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.338-344
    • /
    • 2021
  • The recently continuous enhancement and development in the biomedical side for the betterment of human life. The Wireless Body Area Networks is a significant tool for the current researcher to design and transfer data with greater data rates among the sensors and sensor nodes for biomedical applications. The core area for research in WBANs is power efficiency, battery-driven devices for health and medical, the Charging limitation is a major and serious problem for the WBANs.this research work is proposed to find out the optimal solution for battery-friendly technology. In this research we have addressed the solution to increasing the battery lifetime with variable data transmission rates from medical equipment as Wireless Endoscopy Capsules, this device will analyze a patient's inner body gastrointestinal tract by capturing images and visualization at the workstation. The second major issue is that the Wireless Endoscopy Capsule based systems are currently not used for clinical applications due to their low data rate as well as low resolution and limited battery lifetime, in case of these devices are more enhanced in these cases it will be the best solution for the medical applications. The main objective of this research is to power optimization by reducing the power consumption of the battery in the Wireless Endoscopy Capsule to make it battery-friendly. To overcome the problem we have proposed the algorithm for "Battery Friendly Algorithm" and we have compared the different frame rates of buffer sizes for Transmissions. The proposed Battery Friendly Algorithm is to send the images on average frame rate instead of transmitting the images on maximum or minimum frame rates. The proposed algorithm extends the battery lifetime in comparison with the previous baseline proposed algorithm as well as increased the battery lifetime of the capsule.

RF 무선통신 기술을 이용한 심전도 및 온.습도 측정 시스템 (The Measurement System of ECG, Temperature and Humidity Using RF wireless Communication Technique)

  • 임진희;남효덕;정우철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.356-357
    • /
    • 2007
  • In this paper, we developed an integrated miniaturized device which acquires and transmits the signal of ECG an interested heartbeat and body's temperature and humidity. Using an amplifier circuit on the electrodes and the radio frequency transmission, the developed system dispenses with the use of cables among the electrodes, amplifier, and the post processing system. The sensor signals are transmitted to the RF-wireless terminal that was developed using the micro controller Aduc812, LCD, RF-module (frequency 424MHz, 9600-bps). In results, the developed system improves not only the signal-to-noise ration in dynamic ECG & and body's temperature and humidity measurement, but also the user convenience.

  • PDF

u-헬스케어 시스템과 네트워크 트래픽 매니지먼트 시스템의 데이터베이스 설계 및 구현 (Database Designs for u-Healthcare System and Magi Network Traffic Management System)

  • 용기택;;이채우
    • 전자공학회논문지CI
    • /
    • 제45권3호
    • /
    • pp.103-112
    • /
    • 2008
  • 본 논문에서는 u-healthcare system과 트래픽 모니터링 및 분석 시스템인 MAGI의 시스템에 대해 설명하고 각각의 데이터베이스를 분석한다. u-healthcare system은 생체 신호 센서 네트워크와 모바일 게이트웨이를 이용하여 환자의 생체 신호를 환자의 장소와 시간에 관계없이 모니터링하고 분석하는 시스템이다. MAGI는 기존의 트래픽 모니터링 툴의 문제점을 보완한 실시간 트래픽 모니터링 및 분석 시스템이다. MAGI 실시간 트래픽을 분석을 통하여 다이나믹한 방화벽을 구현 할 수 있다. 본 논문은 구현한 시스템의 분석은 물론 데이터베이스의 스키마 및 저장된 데이터를 자세히 분석 하였다. 또한 본 논문은 이론적인 전개와 실제 테스트를 통한 정성적인 성능 분석을 통하여 시스템의 적절성을 평가하였다.