• Title/Summary/Keyword: Body Sway

Search Result 104, Processing Time 0.024 seconds

Construction Monitoring for Steel Truss Bridge Widening Works (강 트러스교 확장공사시 시공중 계측)

  • Lee, Chang Soo;Jang, Jeong Hwan;Yi, Jang Seok;Kim, Nam Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.103-112
    • /
    • 2005
  • This study examines the stability of Sungsu bridge which was issued nine years ago because of its collapse accident and now is on the progress of extension work in each construction stage by construction monitoring system. From this study, the measured value in each construction stage of anchorage truss and suspended truss shows the agreement with the analytical values up to 60~110 percents, and the elements' stresses emanating from the pre-loading stage, are also similar to the analytical value. Regarding these results, it is expected that each member has enough stiffness and the construction condition is satisfactory. In addition, it is expected that the transverse members and sway bracing bolts integrate completely the existing truss and new attached truss as a one body from the result of the vibration test to find out the integration rates.

Effect of Vision Coherent Sensory Cue on Roll Tilt Perception and Sensory Weighting (족부 진동 자극 유무에 따른 인체의 운동지각 변화 및 정량화)

  • Lim, Hye-Rim;Park, Su-Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1091-1097
    • /
    • 2012
  • Nowadays, some movie theaters provide additional sensory information in 3D movies to enhance visually induced motion perception. However, no studies have investigated how motion perception increases. Thus, in this study, we examined the effect of visual coherent sensory information on visually induced motion perception and quantification of sensory information. A visual stimulus rotated sinusoidally and visual coherent sensory information were applied as vibrations to a subject's foot. We measured the sway of the subject's body by using a force plate and somatosensory bar rotation that represents the subject's perception of the horizon using an encoder. By using this data, we obtained the weight of the sensory information using a Kalman filter. As a result, it was found that subjects rotated the somatosensory bar more when visual coherent vibrations were applied. The weight of vision also increased when visual coherent vibrations were applied. Thus, we can conclude that visual coherent sensory information tends to enhance visually induced motion perception and weight of vision.

Effect of Unstable Surface Exercise on Trunk Posture and Balance Ability in Patients With Scoliosis: After six months follow-up (불안정한 표면 운동이 척추측만증 환자의 체간자세와 균형에 미치는 영향)

  • Lee, Woo Jin;Kong, Young Soo;Ko, Yu Min;Park, Ji Won
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.232-238
    • /
    • 2013
  • Purpose: The aim of this study was to evaluate the effect of lumbar stabilization exercise on an unstable surface on trunk posture and static standing balance ability in patients with scoliosis. Methods: Subjects included 18 patients who showed symptom of scoliosis. Patients were divided into two experimental groups, one using an unstable surface and one using a fixed surface, and the patients were required to perform a lumbar stabilization exercise a total of 12 times for 60 minutes per session, three times per week for a period of four weeks, with a six-months follow-up period. Results: A significant reduction was observed in the group that performed the lumbar stabilization exercise on an unstable surface (p<0.05). A significant decrease in both the condition of closed eyes or open eyes in the left and right directions was observed in the group that performed the lumbar stabilization exercise on an unstable surface (p<0.05). After six months, results of comparison of the length of both sides of the trunk showed a significantl decrease in the group performing lumbar stabilization exercises on an unstable surface. Conclusion: Lumbar stabilization exercise on an unstable surface improved the trunk posture of patients with scoliosis symmetrically, and static balance ability in a standing posture showed improvement. In the future, lumbar stabilization exercise on an unstable surface may be used as an exercise for posture correction and balance increase for patients with scoliosis.

Body Sway as a Possible Indicator of Fatigue in Clerical Workers

  • Volker, Ina;Kirchner, Christine;Bock, Otmar Leo;Wascher, Edmund
    • Safety and Health at Work
    • /
    • v.6 no.3
    • /
    • pp.206-210
    • /
    • 2015
  • Background: Fatigue has a strong impact on workers' performance and safety, but expedient methods for assessing fatigue on the job are not yet available. Studies discuss posturography as an indicator of fatigue, but further evidence for its use in the workplace is needed. The purpose of the study is to examine whether posturography is a suitable indicator of fatigue in clerical workers. Methods: Thirty-six employees (${\emptyset}$ 34.8 years, standard deviation = 12.5) participated in postural tasks (eyes open, eyes closed, arm swinging, and dual task) in the morning and afternoon. Position of their center of pressure (COP) was registered using a Nintendo Wii Balance Board and commercial software. From registered COP time series, we calculated the following parameters: path length (mm), velocity (mm/s), anterior-posterior variance (mm), mediolateral variance (mm), and confidence area ($mm^2$). These parameters were reduced to two orthogonal factors in a factor analysis with varimax rotation. Results: Statistical analysis of the first factor (path length and velocity) showed a significant effect of time of day: COP moved along a shorter path at a lower velocity in the afternoon compared with that in the morning. There also was a significant effect of task, but no significant interaction. Conclusion: Data suggest that postural stability of clerical workers was comparable in the morning and afternoon, but COP movement was greater in the morning. Within the framework of dynamic systems theory, this could indicate that the postural system explored the state space in more detail, and thus was more ready to respond to unexpected perturbations in the morning.

Effects of Rhythmic Auditory Stimulation Using Music on Gait With Stroke Patients

  • Oh, Yong-seop;Kim, Hee-soo;Woo, Young-keun
    • Physical Therapy Korea
    • /
    • v.22 no.3
    • /
    • pp.81-90
    • /
    • 2015
  • This study aimed to determine the effects of Rhythmic Auditory Stimulation (RAS) using music and a metronome on the gait of stroke patients. 13 female and 15 male volunteers were randomly allocated to two groups: namely a group to receive RAS using music and a metronome group (the experimental group; $n_1=14$) and a group to receive RAS using a metronome only (the control group; $n_2=14$). The affected side was the left side in 15 subjects and the right side in 13 subjects. The mean age of the subjects was 56.6 years, and the mean onset duration of stroke was 8.6 months. Intervention was applied for 30 minutes per session, once a day, 5 times a week for 4 weeks. To measure the patients' gait improvement, we measured gait velocity, cadence, stride length, double limb support using GAITRite, body center sway angle using an accelerometer, and Timed Up-and-Go test. Functional Gait Assessment were conducted before and after the experiment. The paired t-test was used for comparisons before and after the interventions in each group. Analysis of covariance was used for comparisons between the groups after the interventions. Statistical significance was set at ${\alpha}=.05$. Within each of the two groups, significant differences in all of the dependent variables before and after the experiment (p<.05) were observed. However, in the comparison between the two groups, the experimental group showed more significant improvements in all dependent variables than the control group (p<.05). Our results also suggest that in applying RAS in stroke patients, the combination of music and a metronome is more effective than using a metronome alone in improving patients' gait.

Real time remote management for home network system using bio-physical sensor (생체 센서 시스템을 이용한 실시간 원격 홈 네트워크 시스템)

  • Kim, Jeong-Lae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.117-124
    • /
    • 2011
  • This study was realized the home network system for home care by bio-physical sensor system, to convey for the remote physical signal. The composition condition has four functions of displacement point for a Vision, Somatosensory, Vestibular and CNS that the basic measurement used to a Heart Rate, Temperature, Weight. Physical signal are decided to search a max and min point with adjustment of 0.01 unit in the reference level. There were checked physical condition of body balance to compounded a physical neuroceptor of sensory organ for the measurement such as a Vision, Somatosensory, Vestibular, CNS, BMI. There are to check a health care condition through a combination of physical organ with a posturography of a exercise. The service of home network system can be used to support health care management system through health assistants in health care center and central health care system. It was expected to monitor a physical parameter for the remote control health management system.

The Effect of Visual Feedback Training Using a Mirror on the Balance in Hemiplegic Patients (거울을 이용한 시각적 되먹임 훈련이 편마비 환자의 균형능력에 미치는 효과)

  • Ji, Sang-Goo;Nam, Gi-Won;Kim, Myoung-Kyun;Cha, Hyun-Kyu
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.2
    • /
    • pp.153-163
    • /
    • 2011
  • Purpose: This study was conducted to compare the effect of visual feedback training using mirror and the training without mirror on the balance in people with hemiplegic paralysis. Methods: A total of 26 stroke patients were enrolled in this study. The participants were allocated randomly to 2 groups : visual feedback training group(n=13) and control group(n=13). Both groups received PNF(proprioceptive neuromuscular facilitation) for 5 times(each 30 minutes) per week over 6 weeks period. The group, which is enrolled in visual feed back training, performed additional exercise in front of mirror for 30 minutes. The control group performed same exercise without mirror. The data was analyzed using a paired t-test and independent t-test to determine the statistical significance. Results: The visual feedback training group showed significantly increased foot pressure and total pressure compared to the control group(p<.05) and significantly decreased body sway compared to the control group (p<.05). Also, visual feedback training group showed significant increase on the Berg Balance Scale(BBS), Timed Up and Go test(TUG) compared to the control group(p<.05). Conclusion: These results support the perceived benefits of visual feedback training using mirror to augment the balance of stroke patients. Therefore, visual feedback training using mirror is feasible and suitable for stroke patients.

Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.139-160
    • /
    • 2015
  • The global performance of the 5MW OC4 semisubmersible floating wind turbine in random waves was numerically simulated by using the turbine-floater-mooring fully coupled and time-domain dynamic analysis program FAST-CHARM3D. There have been many papers regarding floating offshore wind turbines but the effects of second-order wave-body interactions on their global performance have rarely been studied. The second-order wave forces are actually small compared to the first-order wave forces, but its effect cannot be ignored when the natural frequencies of a floating system are outside the wave-frequency range. In the case of semi-submersible platform, second-order difference-frequency wave-diffraction forces and moments become important since surge/sway and pitch/roll natural frequencies are lower than those of typical incident waves. The computational effort related to the full second-order diffraction calculation is typically very heavy, so in many cases, the simplified approach called Newman's approximation or first-order-wave-force-only are used. However, it needs to be justified against more complete solutions with full QTF (quadratic transfer function), which is a main subject of the present study. The numerically simulated results for the 5MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model test results by Technip/NREL/UMaine. The predicted motions and mooring tensions for two white-noise input-wave spectra agree well against the measure values. In this paper, the numerical static-offset and free-decay tests are also conducted to verify the system stiffness, damping, and natural frequencies against the experimental results. They also agree well to verify that the dynamic system modeling is correct to the details. The performance of the simplified approaches instead of using the full QTF are also tested.

Comparison of Center of Pressure Displacement during Sit to Stand to Sit and Balance Ability of Subjects with and without Chronic Ankle Instability

  • Hyun-Sung Kim;Seung-Jun Oh
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • Purpose : The purpose of this study is to compare the balance ability between subjects with chronic ankle instability and normal people and the center of pressure displacement during the sit to stand and stand to sit. Methods : The subjects of this study were 63 who met the inclusion criteria and were classified into normal group (n=33) and chronic ankle instability group (n=30). The displacement of the center of pressure during sit to stand and stand to sit was measured. And the limit of stability and Y-balance tests were performed to measure the balance ability. Independent t-test was conducted to compare center of pressure displacement and balance ability between groups, and pearson correlation was conducted to analyze the correlation between the center of pressure displacement and balance ability. Results : In the case of the center of pressure displacement, there was a significant difference between the two groups during sit to stand and stand to sit. In the case of balance, both limit of stability and Y-balance test showed significant differences between the two groups. At the time of sit to stand, the center of pressure displacement showed a significant correlation with balance abilities, and at the time of stand to sit, the center of pressure displacement showed a significant correlation with Y-balance test. Conclusion : Chronic ankle instability shows that there is a lot of sway in the body due to compensation to replace the decrease in ankle joint range of motion when performing sit to stand and stand to sit due to sensory input damage such as decrease in ankle range of motion and decrease in ankle proprioception. Chronic ankle instability is expected to have a negative effect on our daily lives in life. The results of this study will serve as the basis for the dynamic approach to objective evaluation, treatment, and prevention of chronic ankle instability.

A Study on Tail Vibration Reduction for the Next Generation High Speed EMU (차세대 분산형 고속열차의 후미진동 저감에 관한 연구)

  • Jeon, Chang-Sung;Kim, Young-Guk;Kim, Seok-Won;Kim, Sang-Soo;Choi, Sung-Hoon;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.543-549
    • /
    • 2012
  • This study describes the tail vibration reduction for the next generation high speed EMU(HEMU-430X). The model of 6 cars was generated and the calculation was performed using VAMPIRE(railway vehicle dynamic software). In view of ride characteristics, HEMU-430X was expected to sway at the tail because of the yaw damper direction. The lateral acceleration of vehicle body exceeded the criteria because of hunting. To reduce this hunting motion, some methods such as wheel profile change, the change of damping coefficient for the 2nd lateral damper, the damping coefficient change of yaw damper were tested, but had little effect. Finally, the yaw damper direction was changed and the tail vibration disappeared. In real running test, the tail vibration appeared at the speed of 150km/h and the yaw damper direction change made the vehicle stable at the speed of 300km/h. The maximum test speed of HEMU-430X is 430km/h. If the tail vibration appears at higher speed, some other methods in this study may be considered to reduce it.