• Title/Summary/Keyword: Bobbin Coils

Search Result 16, Processing Time 0.023 seconds

Optimal Design of a Fine Actuator for Optical Pick-up (광픽업 미세구동부의 최적설계)

  • Lee, Moon-G;Gweon, Dae-Gab
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.819-827
    • /
    • 1997
  • In this paper, a new modeling of a fine actuator for an optical pick-up has been proposed and multiobjective optimization of the actuator has been performed. The fine actuator is constituted of the bobbin which is supported by wire suspension, the coils which wind around the bobbin, and the magnets which cause the magnetic flux. If current flows in the coils, magnetic force is so produced as to be balanced with spring force of wire, so the bobbin is pisitioned. In this model the transfer function from input voltage to output displacementof bobbin has been obtained so that we can describe this integrated system with electromagnetic and mechanical parts. Wire suspension is regarded as a continuous Euler beam, damper as distributed viscous damping, and bobbin as a rigid body which can move up- and down- ward motion only. According to the model, the high frequency dynamic characteristics of the fine actuator can be known and the effect of damping can be investigated while the conventional second order model cannot. In multiobjective optimization, two objective functions have been chosen to maximize the fundamental frequency and the sensitivity with respect to the input voltage of the actuator so that Pareto's optimal solutions have been obtained using .epsilon.-constraint method. These objective functions will satisfy the trends which will enhance the access speed and reduce the tracking error in the optical pick-up technology of next generation. In the result of optimization, we obtain the designs of the optical pick-up fine actuator which has high speed, high sensitivity and low resonant peak. Furthermore, we offer the relation between two object functions so that the designer can make easy choice.

Quench Characteristic of the Model Coil for a $\mu$ SMES Magnet ($\mu$ SMES 마그네트용 모델 코일의 ?치 특성)

  • 김해종;성기철;조전욱;김석환;이언용;권영길;류강식;류경우
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.5-9
    • /
    • 2001
  • For the development of a small-sized superconducting magnetic energy storage($\mu$SMES) system we designed, fabricated and tested a model coil consisting of five coils with different features. e.g. winding tensions. bore diameters and materials. cooling channels. The results show that even in the highly pre-stressed small coil the quench currents of the coils are degraded to about 70% of their coils critical current. The quench currents of the coils with natrow cooling channels are two times as high as that of the coil without spacers. The test results also indicate that the usual training effect depends on the winding tensions of the coils according to materials of the bobbin.

  • PDF

Test of the Model Coil for a SMES (SMES용 Model Coil의 특성시험)

  • Kim, H.J.;Seong, K.C.;Cho, J.W.;Kwon, Y.K.;Ryu, K.S.;Ryu, K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.726-728
    • /
    • 2001
  • For the development of a small-sized superconducting magnetic energy storage (SMES) system we designed, fabricated and tested the model coil consisting five coils with different features, e.g. winding tensions, bore diameters and materials, cooling channels. The results show that even in the highly pre-stressed small coil A, about 70 % of the coils critical current are degraded. The quench current of the coils A, B and E with narrow cooling channels is two times as high as that of the coil C without them though they are similar except spacers. The test results also indicate that the usual training effect depends on the winding tensions of the coils but the quench characteristic does not change according to materials of a bobbin.

  • PDF

Fabrication and Test of the Model Coil for a $\mu$ SMES Magnet ($\mu$ SMES 마그네트용 Model Coil의 제작 및 특성시험)

  • 김해종;성기철;조전욱;이언용;권영길;류강식;류경우
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.89-91
    • /
    • 2001
  • For the development of a small-sized superconducting magnetic energy storage (SMES) system we designed, fabricated and tested the model coil consisting five coils with different features, e.g. winding tensions, bore diameters and materials, cooling channels. The results show that even in the highly pre-stressed small coil A, about 70 % of the coils critical current are degraded The quench current of the coils A, B and E with narrow cooling channels is two times as high as that of the coil C without them though they are similar except spacers. The test results also indicate that the usual training effect depends on the winding tensions of the coils but the quench characteristic does not change according to materials of a bobbin.

  • PDF

Eddy Current Sensor Development for Offshore Pipeline NDT Inspection (해양파이프라인 비파괴검사를 위한 와전류 센서 개발)

  • Lee, Seul-Gi;Song, Sung-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.199-206
    • /
    • 2015
  • Regular high-strength carbon steel is currently the most commonly used pipe material for onshore and offshore pipelines. The corrosion of offshore pipelines is a major problem as they age. The collapse of these structures as a result of corrosion may have a heavy cost is lives and assets. Therefore, their monitoring and screening is a high priority for maintenance, which may ensure the integrity and safety of a structure. Monitoring risers and subsea pipelines effectively can be accomplished using eddy current inspection to detect the average remaining wall thickness of corroded low-alloy carbon steel pipelines through corrosion scaling, paint, coating, and concrete. A test specimen for simulating the offshore pipeline is prepared as a standard specimen for an analysis and experiment with differential bobbin eddy current sensors. Using encircling coils, the signals for the defect in the simulated specimen are analyzed and evaluated in experiments. Differential bobbin eddy current sensors can diagnose the defects in a specimen, and experiments have been carried out using the developed bobbin eddy current sensor. As a result, the most optimum coil parameters were selected for designing differential bobbin eddy current sensors.

A study on charging and electrical stability characteristics with no-insulation and metal insulation in form of racetrack type coils

  • Quach, Huu Luong;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.13-19
    • /
    • 2020
  • This study presents the experiment and simulation results on the magnetic field response and electrical stability behaviors of no-insulation (NI) and metal insulation with stainless steel tape (MI-SS) which wound in form of racetrack type coils. First of all, the structural design of the racetrack type bobbin was shown along with its parameters. Then, the current-voltage tests were carried out to measure the critical current of both test coils. Also, the sudden discharging and charging tests were performed in the steady state to estimate the decay field time and magnetic field response, respectively. Finally, the overcurrent tests were conducted in the transient state to investigate the electrical stability of these test coils. Based on the experimental results, the contact surface resistances were calculated and applied to the field coils (FCs) of 10-MW-class second generation high temperature superconducting generator (2G HTSG) used in wind offshore environment. The charging delay time and electrical stability for NI and MI-SS HTS FCs of 10-MW-class 2G HTSG are analyzed by the equivalent circuit model and the key parameters which were obtained from the electromagnetic finite element analysis results.

Development of ETSS for the SG Secondary Side Loose Part Signal Detection and Characterization (SG전열관 2차측 이물질 검출 및 특성분석을 위한 ETSS 개발)

  • Shin, Ki Seok;Moon, Yong Sig;Min, Kyong Mahn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.61-66
    • /
    • 2011
  • The integrity of the SG(Steam Generator) tubes has been challenged by numerous factors such as flaws, operation, atmosphere, inherently degraded materials, loose parts and even human errors. Of the factors, loose parts(or foreign materials) on the secondary side of the tubes can bring about volumetric defects and even leakage from the primary to the secondary side in a short period of time. More serious concerns about the loose parts are their unknown influx path and rapid growth rate of the defects affected by the loose parts. Therefore it is imperative to detect and characterize the foreign materials and the defects. As a part of the measures for loose part detection, TTS(Top of Tubesheet) MRPC(Motorized Rotating Pancake Coils) ECT has been carried out especially to the restricted high probability area of the loose part. However, in the presence of loose parts in the other areas, wide range loose part detection techniques are required. In this study, loose part standard tube was presented as a way to accurately detect and characterize loose part signals. And the SG tube ECT bobbin coil and MRPC ISI(In-service Inspection) data of domestic OPR-1000 and Westinghouse Model F(W_F) were reviewed and consequently, comprehensive loose part detection technique is derived especially by applying bobbin coil signals

Wind-and-flip technique for the fabrication of a persistent mode superconductive magnet by using a coated conductor

  • Lee, Hee-Gyoun;Kim, Jae-Geun;Kim, Woo-Seok;Lee, Seung-Wook;Choi, Kyeong-Dal;Hong, Gye-Won;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.2
    • /
    • pp.7-10
    • /
    • 2007
  • Persistent mode HTS pancake coil has been fabricated using a coated conductor by a "wind-and-flip" method. A coated conductor with the length of 1.2 meters was divided at the center along the length. The sliced coated conductor was wound on a pair of bobbins with a diameter of around 4 cm and two pancake coils connected superconductively without a resistive joint were prepared. By flipping one of the pancake coils, the magnetic field generated by each coil is to be aligned to the same direction and generate meaningful magnetic field while the magnetic fields of two spit coils are canceled without flipping. Permanent current was induced by flowing current to the coil immersed in liquid nitrogen pool using a power supply. A magnetic field of 48.8 Gauss was generated when 20 A of current was flowing in the pancake coils. The "Wind and flip" method can be applied for the fabrication of a long solenoid magnet by winding a sliced coated conductor on a cylindrical bobbin. It is also introduced that the construction of multiple sets of pancake (or solenoid) coils is possible by a "wind-and-flip" method using a wide coated conductor.

A Simple a.c. Magnetic Susceptometer Using self-inductance Measurement of a Single Coil Mounted on a Cryostat Cold Head

  • Dho, Joong-Hoe
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.177-181
    • /
    • 2008
  • A very simple a.c. magnetic susceptometer for use in a helium closed cycle cryostat is reported in this paper. This simple setup has only a single bobbin-less copper coil, instead of the primary coil and two secondary coils typically used in mutual-inductance types. The single bobbin-less copper coil is directly mounted on the cryostat cold head. A sample is attached on the inside wall of the copper coil using a thermal contact material and its a.c. magnetic susceptibility is obtained from the measurement of the self-inductance of the sample coil using an LCR meter or an impedance analyzer. Experimental details are described and illustrative measurements on magnetic and superconducting materials as a function of temperature are included. The performances and limitations of this simple a.c. magnetic suceptometer are also discussed.

Detectability evaluation of the loose parts in steam generator by eddy current testing techniques

  • Kim, Kyungcho;Min, Kyongmahn;Kim, Changkuen;Kim, Jin-Gyum;Jhung, Myungjo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1160-1167
    • /
    • 2018
  • Detectability of the loose parts (LPs) in steam generator (SG) was studied with eddy current testing technique such as X-probe, bobbin and rotating coils ($MRPC^{(R)}$) as a function of LP size and spacing between LP and tube or between LP and support structures. SG mockup simulating SG tube and support structures with LP was fabricated. The X-probe showed slightly better detectability than $MRPC^{(R)}$ for LP of ferrous (F-LP) material and vice versa for LP of nonferrous (NF-LP) material. In terms of feasibility, inspection rate and other predictable features of the SG tubing inspections, X-probe can be used reliably for monitoring the LPs and the flaws formed by LPs on SG tubes.