• Title/Summary/Keyword: Boat Hull

Search Result 135, Processing Time 0.024 seconds

A Study on the Improvement of Resistance Performance for G/T 4.99ton Class Korean Coastal Fishing Boats (G/T 4.99톤급 한국 연안어선의 저항성능 개선에 관한 연구)

  • Yu, Jin-Won;Lee, Young-Gill;Jee, Hyun-Woo;Park, Ae-Seon;Choi, Young-Chan;Ha, Yoon-Jin;Jeong, Kwang-Leol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.757-762
    • /
    • 2010
  • Korean fishing boats have had appropriate hull forms for the safety, stability and convenience of fishing ability. However, Korean fishermen are recently concerned about the resistance performance and speed of Korean fishing boats, because the prices of fuel oil are gradually risen, also the exhausting of fish resources and the demand of high speed fishing boats are increased. Therefore, the necessity of the study on the improvement of resistance performance for Korean small coastal fishing boats is gradually increased. This study compares the hull form characteristics of Korean fishing boats with those of Japanese fishing boats, and the hull form of a representative Korean fishing boat is modified. From the modification of the hull form parameters for the Korean fishing boat, the improvement of resistance performances is evaluated. Moreover, the increase of resistance performances is also achieved from the modification of local characteristics for the hull form of the Korean fishing boat. A computational method and ship model tests in towing tank are used for the conformations of the improvement of resistance performance.

Modeling of steady motion and vertical-plane dynamics of a tunnel hull

  • Chaney, Christopher S.;Matveev, Konstantin I.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.323-332
    • /
    • 2014
  • High-speed marine vehicles can take advantage of aerodynamically supported platforms or air wings to increase maximum speed or transportation efficiency. However, this also results in increased complexity of boat dynamics, especially in the presence of waves and wind gusts. In this study, a mathematical model based on the fully unsteady aerodynamic extreme-ground-effect theory and the hydrodynamic added-mass strip theory is applied for simulating vertical-plane motions of a tunnel hull in a disturbed environment, as well as determining its steady states in calm conditions. Calculated responses of the boat to wind gusts and surface waves are demonstrated. The present model can be used as a supplementary method for preliminary estimations of performance of aerodynamically assisted marine craft.

Hull Form Development of Small-Size Coastal Leisure Boat - Resistance Performance at High Speed Ranges - (연안용 소형 레저선 선형개발 - 고속 영역에서의 저항특성 고찰 -)

  • Jeong, Uh-Cheul;Park, Je-Woong;Koo, Jong-Do
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.60-63
    • /
    • 2003
  • Resistance performance of 3 G/T class coastal leisure boat is experimentally investigated at high speed ranges and the effect of a fin attached at hull side is studied together. Wave patterns are observed to make clear the relation between the resistance performances and the wave characteristics.

  • PDF

The Development of Hull form for Turtle Boat Type Incinerating Vessel Considering the Resistance Performance (저항 성능을 고려한 거북선 형상의 해상소각선 선형개발)

  • Lee, Kwi-Joo;Kwon, Kyu-Hyok;Lee, Kon-Chol
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.168-175
    • /
    • 1999
  • In the present paper, a hull form for the turtle boat type incinerating vessel was developed based on the Finite source Distribution Method(FDM) and 1-$C_p$ method. In order to obtain proper hull form within the limited time and budget, a computer program OCL(Optimization of $C_p$ and LCB) was developed adn used. For the confirmation of the theoretical results by OCL, these theoretical results were compared with results of model test in the circulating water channel (CWC)in Chosun University.

  • PDF

Study on Hull Form Development and Resistance Performance of High Speed Aluminum Leisure Boat (30피트급 고속 알루미늄 레저보트 선형개발과 저항성능에 관한 연구)

  • Jeong, Uh-Cheul;Kim, Do-Jung;Choi, Hong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.14-18
    • /
    • 2012
  • A 30ft class aluminum leisure boat is newly developed and the resistance performances are investigated by a model test at a high-speed circulating water channel. The effect of a fin attached to the side of the hull is studied at two different displacements. Wave patterns are observed to make clear the relationship between the resistance performance and wave characteristics. It can be found that a chine position at the draft line can have a strong effect on the resistance performance around a certain velocity range.

Hull Form Development of 32-ft Class Leisure Boat by Statistical Analysis of Actual Ships (실적선 통계분석을 이용한 32피트급 레저보트 선형개발)

  • Jeong, Uh-Cheul;Park, Je-Woong;Kim, Kyu-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.58-63
    • /
    • 2008
  • A 32-ft class leisure boat was newly developed using statistical analysis of actual ships. Resistance performances were investigated by testing models in a high-speed circulating water channel, and with the CFD method. The effects of a trim tab and of a fin attached at the hull side were studied together. Wave patterns were observed to clarify the relationship between resistance performance and wave characteristics. It was found that a trim tab and a side fin play a role in increasing resistance performance within a certain velocity range.

Initial Hull Form Development of Small-Size Coastal Leisure Boat (연안용 소형 레저선박의 초기선형 개발)

  • Jeong, Uh-Cheul;Park, Je-Woong;Koo, Jong-Do;Kim, Do-Jung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.192-197
    • /
    • 2003
  • Initial hull form of 3 G/T and $20{\sim}25$ knots class coastal leisure boat is newly developed. The performances, which are resistance, trim and sinkage, are investigated at high speed circulating water channel (CWC). Wave patterns are observed together to make clear the relation between the resistance performance and the wave characteristics.

  • PDF

Integrated CAD/CAE System for Planing Hull Form Design (활주형 선박의 선형설계를 위한 통합 CAD/CAE 시스템)

  • 김태윤;김동준
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.298-304
    • /
    • 2003
  • In this paper a free-form hull design program and performance prediction program for planing boat is introduced. This program enables the designer to do complex geometric hull shape design on a personal computer and accurately to predict power requirements for a given loading and velocity. For a free form design, Bezier curve model is adopted as a basic representation tool of curves and surfaces, and this program has versatile functions to do fairing jobs with a convenient graphical user interface. After creating a hull form the geometric data is provided in a manner compatible with a variety of analysis tools including 'Motion Analysis(by Zarnick)' for prediction of motion characteristics in regular waves, 'Running Attitude (by Savitsky)' for prediction of the running attitude and required power.

Performance Improvement of a High Speed Planing Boat by a Stern Wedge

  • Yang, Seung-Il;Kim, Seong-Hwan
    • 한국기계연구소 소보
    • /
    • s.13
    • /
    • pp.87-98
    • /
    • 1984
  • An experimental study carried out to predict the performance characteristics of a high speed planing boat at the two displacements whose hull form shows hard chines form transom to bow. In the resistance test the planing hull model was porpoising at and above 30 knots for both displacements of 30 tons and 24 tons. A small stern wedge was newly designed and attached across hull bottom. The planing hull model with the stern sedge did not show any porpoising up to the speed of 45 knots for both displacements and it analysed results shows the improvement of resistance performance and planing performance comparing with those of original hull form; i.e. for displacement of 30 tons the effective power and trim angle were reduced by 18.9% and 5.71 degrees at the speed of 28 knots, and for the displacement of 24 tons the effective power and trim angle were reduced by 23.63% and 4.37 degrees at the speed of 28 knots, respectively.

  • PDF

Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat (모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석)

  • Bo-Youp Choi;Chang-Ryeon Son;Joon-Sik Son;Min-Ho Park;Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.