• Title/Summary/Keyword: Boat

Search Result 837, Processing Time 0.023 seconds

IMPROIVING THE PERFORMANCE OF STREAMLINED BOATS BY ENAMEL COATING

  • V.M.Salokhe;D.Gee-Clough;N, Birewar
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.148-157
    • /
    • 1993
  • A study was conducted to evaluate the effect of enamel coating on boat hull drag. The results were compared with drag required for varnished uncoated boats. Models of rice barge and fishing boat were used in this study. The speed range of 0.6 to 1.5㎧ at different loads varying from 6 to 9 kg for rice barge and 4.6 to 6.4kg for fishing boats were used during testing. The total weight of the coated and uncoated boats were kept the same. It was observed that the drag force required by the coated boats was less than identical uncoated ones at all speeds and loads. For both uncoated and coated the drag required increased with speed. The maximum recorded reductions in drag were 26% for the rice barge and 28% for the fishing boat model.

  • PDF

Plug Manufacturing of Leisure Boats through the NC Processing (NC가공을 통한 레저보트의 플러그 제작)

  • Park, Gen-Ong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.606-612
    • /
    • 2010
  • This study took advantage of NC processing technique in order to recreate design in development process of leisure boat based on the Korean boats and ships. CNC milling is an area which is concerned in automation process of boat production and needs sophisticated software, equipment and professionals to pilot it. The progress of manufacture begins when the surface model creation and simulation being done using CAD/CAM software. In this process, the needs such as 3D design, NC processing data, plug lamination and partition processing appear as detailed steps. The study completed these detailed steps and also the application example has been studied with presenting engineering potentialities.

A study on the development of 6m Rigid Inflatable Leasure Boat (6m RIB형 레저보트 개발에 관한 연구)

  • Kim, Hyoung-Min;Suh, Sung-Bu;Ko, Jung-Nam
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.880-885
    • /
    • 2005
  • RIB(Rigid Inflatable Boat)형 보트는 선체, 팽차식 선측튜브를 적용한 고속 다목적보트로 뛰어난 내항성능과 높은 안전성으로 해외 선진국에서는 해양레저 활동에 적합한 신개념 고부가가치 보트로 각광받고 있으나 국내에는 레저용 RIB 보트의 제작 및 개술개발 실적이 전무한 실정이다. 이에 본 연구에서는 고속이면서도 안정성 및 편의성을 고려한 레저용 RIB의 최적선형 설계 및 공간배치 연구, 하이파론 선측튜브 설계, 조선학적 제계산을 통한 주요성능 검토 등을 통하여 최근 급증하고 있는 해양레저 수요에 대응한 6m급 RIB형 레저보트를 개발하고자 하였다.

  • PDF

Indoor Noise Analysis of Naval Combat Service Support Boat (전투근무지원정 격실의 실내 소음 분석)

  • Park, Mi-You;Han, Hyung-Suk;Cho, Heung-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.91-96
    • /
    • 2011
  • The ship working environment of combat service support boat is very inferior to the ground working environment. For this reason, the crew of a combat service support boat suffer from an occupational disease such as hardness of hearing. Owing to its small size and low status, the improvement of its working and residential environment is occasionally ignored and its indoor noise was not fully investigated. In this study, for improving its residential environment indoor, the indoor noise of its shipboard compartments was analysed.

  • PDF

FSW Properties of Aluminum alloy 5000/6000 for Small Boat (소형선박용 5000계/6000계 알루미늄합금제의 마찰교반접합 특성 연구)

  • Cho, Je-Hyoung;Kim, Myung-Hyun;Choi, Jun-Woong
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • There are so many difficulties of melt bonding mainly applied for hull construction of a aluminum alloy small boat. For resolving this problem, Friction stir welding(FSW) in non-melting solid state welding Process generally is applied in the transport industry. This paper is studied the joining strength characteristics and macrostructure according to dissimilar aluminium 5000/6000 alloy joining for a small boat applied for this FSW technology. It is reported that difference of joining strength in accordance with the direction of rotation in case of friction stir welding between dissimilar metals(Al/Cu, Al/Fe) is also highly large. In this study, Test is carried out by making the specimen according to the direction of rotation of dissimilar aluminium alloy joining.

A Study for Hull form Development of a 9.77 Ton Class Trimaran (9.77 Ton급 삼동선의 선형 개발 및 실용화 연구)

  • Oh, Se-Myun;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.710-716
    • /
    • 2005
  • The objective of the present study is to design a hull form of a 9.77 ton class trimaran for use as a Pleasure boat around the bay of Gyounggy. The boat will be made of fiber reinforced plastics and equipped with a 650 hp diesel engine with a conventional water jet propulsion system and the maximum speed be 25 knots after fully loaded. In the present study, the optimal configuration such as relative location of outriggers of the 9.77 ton class trimaran is selected and the resistance characteristics are carefully studied through a series of model tests. The general arrangement of the boat are also considered in the final decision of the hull form.

A Study on the EHP Estimation and Design Procedure of Small Fishing Boat's Hull Form (소형어선(小型漁船)의 유효마력추정(有效馬力推定) 및 선형설계법(船型設計法))

  • Young-Gill,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.1-10
    • /
    • 1984
  • The computer programs of effective horsepower estimation of small fishing boat were developed, which was based on the statistical analysis of model test results. From the EHP estimation by these program and experimental model tests of practical fishing boats, the estimation accuracy was verified with maximum deviation of about 10 percent. Also, the EHP estimation accuracy was practically applied to initial design of four small fishing boats, and after the tank tests, the EHP reduction of the order of 15 to 25 percent was confirmed, as compared with existing ships. Moreover, a computer aided design procedure of fishing boat's hull form has been proposed in this study. The practical use of this procedure of fishing boat's hull form has been proposed in this study. The practical use of this procedure was demonstrated with the hull form design results of several fishing boats.

  • PDF

Production Method of FRP Boat Using Developable Surface without a Mould (외판 전개를 응용한 무형틀 FRP선박 건조방법)

  • Yang, Ji-Man;Ha, Yun-Sok;Kim, Hyo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.506-515
    • /
    • 2005
  • Novel ships are commonly required iterative hull form modifications until she get reputation for new marine environment. Small FRP boats are manufactured in a identical shape with a mould. It implies that every modification step requires great time and expense which makes it difficult to improve the hull form promptly. Domestic hull form of small fishing boat of force has been evolved from the traditional hull form of developable shape. Utilizing this typical developable characteristics of small boats, ,New mouldless production method for FRP boat has been suggested and it is confirmed that the method is recommendable for a petty order of hull in evolving period of hull form development.

A Study on the Standard of Ship Hull Construction for Aluminium Alloys Fishing Boats (알루미늄 합금제 어선건조를 위한 선체구조기준 설정에 관한 연구)

  • Hong, Bong-Ki
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.1
    • /
    • pp.22-82
    • /
    • 2000
  • The ship hull construction materials of fishing boat has changed in order that wooden, steel, and fiber glass reinforced plastic(FRP). The fishing boat made from FRP has increased every year because that materials has proved excellent of the characteries for fishing boats construction members. Recently, FRP tend towards evasion for the pollution of air enviroment. Therefore. the materials of fishing boat construction must be exchanged by another one. Aluminium alloys must be recommended for fishing boats construction mateials because that is light weight and corrosion resisting in the sea water. Regulation of the standard of ship hull construction for aluminium alloys fishing boats did not enact laws in the interior now. Therefore, this regulation was studied by the following items. that is Rudder, Bottom construction, Side hull plate construction, Deck plate construction, piller. Water tight bulkhead, Deep tank, Fish tank, Stern construction, Superstructure, Deck house construction, Hatch, Engine room opening, Hatch opening, Bulwark, Welding and Rivet etc. A study on the regulation will be contributed to enact laws for fishing boat construction of aluminium alloys.

  • PDF

Development of a 25kW-Class PEM Fuel Cell System for the Propulsion of a Leisure Boat (선박 추진용 25kW급 고분자전해질 연료전지 시스템 개발)

  • Han, In-Su;Jeong, Jeehoon;Kho, Back-Kyun;Choi, Choeng Hoon;Yu, Sungju;Shin, Hyun Khil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.271-279
    • /
    • 2014
  • A 25kW-class polymer electrolyte membrane (PEM) fuel cell system has been developed for the propulsion of a leisure boat. The fuel cell system was designed to satisfy various performance requirements, such as resistance to shock, stability under rolling and pitching oscillations, and durability under salinity condition, for its marine applications. Then, the major components including a 30kW-class PEM fuel cell stack, a DC-DC converter, a seawater cooling system, secondary battery packs, and balance of plants were developed for the fuel cell system. The PEM fuel cell stack employs a unique design structure called an anodic cascade-type stack design in which the anodic cells are divided into several blocks to maximize the fuel utilization without hydrogen recirculation devices. The performance evaluation results showed that the stack generated a maximum power of 31.0kW while maintaining a higher fuel utilization of 99.5% and an electrical efficiency of 56.1%. Combining the 30-kW stack with other components, the 25kW-class fuel cell system boat was fabricated for a leisure. As a result of testing, the fuel cell system reached an electrical efficiency of 48.0% at the maximum power of 25.6kW with stable operability. In the near future, two PEM fuel cell systems will be installed in a 20-m long leisure boat to supply electrical power up to 50kW for propelling the boat and for powering the auxiliary equipments.