• Title/Summary/Keyword: Bluetooth module

Search Result 256, Processing Time 0.03 seconds

Design and Implementation of a Bluetooth Baseband Module with DMA Interface (DMA 인터페이스를 갖는 블루투스 기저대역 모듈의 설계 및 구현)

  • Cheon, Ik-Jae;O, Jong-Hwan;Im, Ji-Suk;Kim, Bo-Gwan;Park, In-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.98-109
    • /
    • 2002
  • Bluetooth technology is a publicly available specification proposed for Radio Frequency (RF) communication for short-range :1nd point-to-multipoint voice and data transfer. It operates in the 2.4㎓ ISM(Industrial, Scientific and Medical) band and offers the potential for low-cost, broadband wireless access for various mobile and portable devices at range of about 10 meters. In this paper, we describe the structure and the test results of the bluetooth baseband module with direct memory access method we have developed. This module consists of three blocks; link controller, UART interface, and audio CODEC. This module has a bus interface for data communication between this module and main processor and a RF interface for the transmission of bit-stream between this module and RF module. The bus interface includes DMA interface. Compared with the link controller with FIFOs, The module with DMA has a wide difference in size of module and speed of data processing. The small size module supplies lorr cost and various applications. In addition, this supports a firmware upgrade capability through UART. An FPGA and an ASIC implementation of this module, designed as soft If, are tested for file and bit-stream transfers between PCs.

Mobile Healthcare System Based on Bluetooth Medical Device

  • Kim, Jeong-Heon;Lee, Seung-Chul;Lee, Boon-Giin;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.241-248
    • /
    • 2012
  • Recently healthcare industry such as pharmaceutical, medical device and healthcare service technology is growing significantly. Mobile healthcare has attracted big attention due to IT convergence technology. Paradigm of healthcare has been changed from the 1st generation(communicable disease prevention) and the 2nd generation(treatment of disease due to extended life expectancy) to the 3rd generation(extended life expectancy due to prevention and control). In our study, we suggest the 3rd generation mobile healthcare system using Bluetooth based wearable ECG monitoring system and smart phone technology. The mobile healthcare system consists of wearable shirts with Bluetooth communication module, ECG sensor, battery, and mobile phone. The ECG data is obtained by a miniaturized sensor and the data is transferred to a mobile phone using Bluetooth communication. Then, user can monitor his/her own ECG signal on an application using Android in mobile phone. The Bluetooth communication device is used due to highly reliable data transmission property and the Bluetooth chip is embedded in every mobile phone. The wearable shirts with chest belt of Bluetooth ECG module is designed with a focus on convenience in the daily life of a wearer. The ECG signal evaluation software in Android based mobile phone is developed for the health check and the ECG signal variation is tested according to the activities of the wearer such as walking, climbing stairs, stand up and sit down, and so on.

Study on the Transmission of Medical Information using Bluetooth Technology (블루투스를 이용한 의료정보 신호의 전송에 관한 연구)

  • 엄정규;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.520-523
    • /
    • 2001
  • In this paper, a system that transmits ECG signals which get from hand baggage ECG is implemented by using Bluetooth technology. Bluetooth technology is a close range wireless communication used wireless frequency 2.4GHZ bandwidth. This technology consumes very small power and provides high reliability also self error correction with high speed frequency hopping. Because every device which uses Bluetooth protocol can communicate each other. These can connect between the system implemented and any devices such as mobile telephone with Bluetooth module, notebook, and the personal mobile device. Also, the paper proposes capability of transmission to the sever of hospital through each type of wireless communication device that acquired medical information signals in mobile medical machine. The system consists of hardware parts with Bluetooth module and host part, and software parts with bluetooth protocol stacks. The host precesses a connection with other device and transmits ECG signals with bluetooth frequency hopping sequence.

  • PDF

A Study on Characteristics of an IR Sensor with Bluetooth (Bluetooth를 이용한 적외선 센서의 특성에 관한 연구)

  • Park, Sun-Jin;Jeong, Jung-Su
    • Convergence Security Journal
    • /
    • v.6 no.3
    • /
    • pp.79-86
    • /
    • 2006
  • This paper studies the sensitivity analysis of an infrared rays (IR) sensor (SHARP-GD2D12) with bluetooth communication. To evaluate the performance of the IR sensor-bluetooth module, the distance and angle data between the sensor and the fixed object are measured with an IR sensor and the measured data are transferred to PC via bluetooth within 100 meters. This experiment shows that the IR sensor-bluetooth system can be used to measure the distance and angle for a fixed object within 100 meters.

  • PDF

A Bluetooth/WiFi Dual-Mode RF Front-End Module Using LTCC Technology (LTCC 기술을 이용한 Bluetooth/WiFi 이중 모드 무선 전단부 모듈 구현)

  • Ham, Beom-Cheol;Ryu, Jong-In;Kim, Jun-Chul;Kim, Dong-Su;Park, Young-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.958-966
    • /
    • 2012
  • This paper presents a compact bluetooth/WiFi dual-mode dual-band RF front-end module(FEM) is realized by low temperature co-fired ceramic(LTCC) technology. The proposed RF front-end module consists of a diplexer, baluns in the LTCC substrate, and an SPDT switch, an SP3T switch on the LTCC substrate. In order to reduce the module size and increase integration level, the proposed diplexer and balun are designed using LC lumped elements. The parasitic elements caused by coupling effect between metal pattern layers and ground plane layer are considered during the design. The fabricated dual-mode RF front-end module has 13 pattern layers including three inner ground layers and it occupies less than $3.0mm{\times}3.7mm{\times}0.66mm$.

Implementation of Temperature and Humidity Sensor Module Based on Z-wave (Z-Wave 기반의 온습도 센서 모듈 구현)

  • Weon, La kyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.157-166
    • /
    • 2022
  • The most commonly used wireless communication technologies in IoT technology include ZigBee, WiFi, Bluetooth, and Z-Wave. In particular, Z-Wave is currently one of the preferred wireless communication technologies, with a global market share of 60 % of these technologies. In this research, a temperature and humidity sensor module using a Z-wave protocol was designed and manufactured by referring to the data sheet. Subsequently, the Z-Wave protocol was analyzed during the operation of the sensor module, and the firmware of the controller module was mounted and implemented. In addition, a program for monitoring the temperature and humidity information from the sensor module was developed and validated. Finally, the performance of the sensor module was validated through master distance and low power tests on it and its reception data success rate.

An Emotion Transfer System Based on LED Using Bluetooth and ZigBee (Bluetooth와 Zigbee를 연동하는 LED 기반 감성전파장치)

  • Kang, Dong-Byeong;Ji, Sang-Hoon;Lee, Young-Dae;Bae, Sung-Han;Jeong, Gu-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.163-168
    • /
    • 2011
  • In this paper, we propose an emotion transfer system based on LED, which presents and transmitts users emotion through Bluetooth and ZigBee using LED light. We propose an emotional LED system interacting multiple LED lighting system and implement the proposed system using smartphone and WPAN network with Bluetooth and ZigBee. For the transmission of data, ZigBee is adopted for each LED lighting system and Bluetooth is utilized for the smartphone. Also, the LED lighting systems which are connected to smartphone have both ZigBee and Bluetooth module for the heterogeneous network. The implemented system shows the validity and applicability of the proposed system.

Study on the Transmission of Medical Information using Bluetooth Technology (블루투스를 이용한 의료정보 신호의 전송에 관한 연구)

  • 엄정규;김영길
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.2
    • /
    • pp.297-301
    • /
    • 2001
  • In this paper, a system that transmits ECG signals which get from hand baggage ECG is implemented by using Bluetooth technology. Bluetooth technology is a close range wireless communication used wireless frequency 2.4GHz bandwidth. This technology consumes very small power and provides high reliability also self error correction with high speed frequency hopping. Because every device which uses Bluetooth protocol can communicate each other. These can connect between the system implemented and any devices such as mobile telephone with Bluetooth module, notebook, and the personal mobile device. Also, the paper proposes capability of transmission to the sever of hospital through each type of wireless communication device that acquired medical information signals in mobile medical machine. The system consists of hardware parts with Bluetooth module and host part, and software parts with blutooth protocol stacks. The host precesses a connection with other device and transmits ECG signals with bluetooth frequency hopping sequence.

  • PDF

Simultaneous monitoring of motion ECG of two subjects using Bluetooth Piconet and baseline drift

  • Dave, Tejal;Pandya, Utpal
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.365-371
    • /
    • 2018
  • Uninterrupted monitoring of multiple subjects is required for mass causality events, in hospital environment or for sports by medical technicians or physicians. Movement of subjects under monitoring requires such system to be wireless, sometimes demands multiple transmitters and a receiver as a base station and monitored parameter must not be corrupted by any noise before further diagnosis. A Bluetooth Piconet network is visualized, where each subject carries a Bluetooth transmitter module that acquires vital sign continuously and relays to Bluetooth enabled device where, further signal processing is done. In this paper, a wireless network is realized to capture ECG of two subjects performing different activities like cycling, jogging, staircase climbing at 100 Hz frequency using prototyped Bluetooth module. The paper demonstrates removal of baseline drift using Fast Fourier Transform and Inverse Fast Fourier Transform and removal of high frequency noise using moving average and S-Golay algorithm. Experimental results highlight the efficacy of the proposed work to monitor any vital sign parameters of multiple subjects simultaneously. The importance of removing baseline drift before high frequency noise removal is shown using experimental results. It is possible to use Bluetooth Piconet frame work to capture ECG simultaneously for more than two subjects. For the applications where there will be larger body movement, baseline drift removal is a major concern and hence along with wireless transmission issues, baseline drift removal before high frequency noise removal is necessary for further feature extraction.

A Study on the Bluetooth Communication Module Platform for LED lighting control (LED 조명관제를 위한 블루투스 통신모듈 플랫폼에 관한 연구)

  • Kwon, Dong-hyun;Heo, Sung-uk;Lim, Ji-yong;Oh, Am-suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.846-847
    • /
    • 2016
  • LED lighting is energy in lighting control based on had developed into a human-centered / multi-functional lighting systems from simple one trillion people thereby using environmental change by combining IT technology and software, including a variety of sensor functions and communication functions, depending on the evolution of the IT Convergence Era the reduction, and the strength and the color tone customized illumination of the user-section of light has been desired. For this intelligent lighting system is applied to the sensor and the control center of the user should be possible, and it is necessary for this artist platform of the communication module. In this paper, we propose a communication platform that utilizes Bluetooth BLE module for LED lighting control.

  • PDF