• Title/Summary/Keyword: Blue-LEDs

Search Result 248, Processing Time 0.024 seconds

Effects of light-emitting diodes on protoplast regeneration from gametophytic cells of the commercial kelp Undaria pinnatifida (Laminariales, Phaeophyceae)

  • Avila-Peltroche, Jose;Won, Boo Yeon;Cho, Tae Oh
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.163-174
    • /
    • 2022
  • Light-emitting-diodes (LEDs) are a lighting source useful for the precise evaluation of light quality effect on biological systems. Despite the importance of light spectra on the regeneration of land plant protoplasts ("naked cells"), this factor has not been tested yet on protoplasts from multicellular algae. This study reports on the effects of pure primary colors (red, blue, and green), dichromatic (red plus blue, RB, 1 : 2) and white LEDs on protoplast regeneration from male and female Undaria pinnatifida gametophytes. We also evaluated the effect of different light spectra on pigment composition (chlorophyll a, chlorophyll c, and fucoxanthine), and the light intensities under the best condition on the regeneration process. In the early stages, blue or RB LEDs increased the percentage of dividing female protoplasts, whereas red, blue, and RB LEDs enhanced that of dividing male protoplasts. In the later stages, RB LEDs showed a positive effect only on the percentage of multiple rhizoid-like protrusions (male gametophyte). They also increased the final area of both regenerated gametophytes. The LEDs did not affect pigment composition in female gametophytes. In male gametophytes, in contrast, they reduced chlorophyll c, while blue, RB, and green LEDs decreased fucoxanthin. Under RB LEDs, the optimal light intensity was 80 µmol photons m-2 s-1 for female gametophytes and 40 to 60 µmol photons m-2 s-1 for male gametophytes. Our results suggest that dichromatic LED illumination (red-blue) improves regeneration of U. pinnatifida gametophyte-isolated protoplasts. Thus, dichromatic LEDs might a suitable light source for enhancing protoplast regeneration in brown seaweeds.

Plant Growth and Morphogenesis Control in Transplant Production System using Light-emitting Diodes(LEDs) as Artificial Light Source - Spectral Characteristics and Light Intensity of LEDs - (인공광원으로 발광다이오우드를 이용한 묘생산 시스템에서 식물생장 및 형태형성 제어 - 발광다이오우드의 분광 특성 및 광강도 -)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 1999
  • Because of their small mass, volume, solid state construction and long life, light-emitting diodes(LEDs) hold promises as a lighting source for intensive plant production system. Spectral characteristics and light intensity of LEDs were tested to investigate their feasibility as artificial lighting sources for growth and morphogenesis control in transplant production system. Blue, green, and red LEDs had a peak-emission wavelength at 442nm, 522nm, and 673nm, respectively. Their half width defined as the difference between upper and lower wavelength in the intensity equivalent to 50% of the maximum intensity showed 26nm, 41nm, and 74nm, respectively. Photosynthetic photon flux(PPE) at the distance of 9cm under the LEDs array was measured as $235{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for red, $109{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for green, and $75{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for blue LEDs. At the same distance, green LEDs had the illuminance of 13,0001x, nine to ten times higher than those of red and blue LEDs. Red, green, and blue LEDs at a distance of 9cm had the irradiance of $46W{\cdot}m^{-2},\;19W{\cdot}m^{-2},\;8W{\cdot}m^{-2}$, respectively. Light intensity of blue, green, and red LEDs increased linearly in proportion to the magnitude of the current applied to the operating circuit. Thus the light intensity of LEDs was controlled by the applied current in operating circuit.

  • PDF

Recent Progress in Blue Perovskite LEDs

  • Joonyun, Kim;Jinu, Park;Byungha, Shin
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.449-457
    • /
    • 2022
  • Halide perovskites are emerging materials for next-generation display applications, thanks to their narrow emission linewidth and band gap tunability, capable of covering the entire range of visible light. Despite their short period of research, perovskite light emitting diodes (PeLEDs) have shown rapid progress in device external quantum efficiency (EQE) in the near-infrared (NIR), red, and green emission wavelengths, and the record EQE has exceeded over 20 %. However there has been limited progress with blue emission compared to the red and green counterparts. In this review, the current status and challenges of blue PeLEDs are introduced, and strategies to produce spectrally stable blue PeLEDs are discussed. The strategies include 1) a mixed halide system in the form of 3-dimensional (3D) perovskites, 2) colloidal perovskite nanocrystals and 3) low dimensional perovskites, known as quasi-2D perovskites. In the mixed halide system, previous reports based on the compositional engineering of 3D perovskites to reduce spectral instability (i.e., halide segregation) will be discussed. Since spectral instability issue originate from the mixed halide composition in perovskites, the two other strategies are based on enlarging the band gap with a single halide composition. Finally, the prospects for each strategy are discussed, for further improvement in spectrally stable blue PeLEDs.

Promoted Growth and Development of Carnation Plantlets In Vitro by Ventilation and Combined Red and Blue Light

  • Nguyen, Quan Hoang;Thi, Luc The;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.26 no.4
    • /
    • pp.166-178
    • /
    • 2018
  • In this study, the principal objective was to investigate the effect of light quality and vessel ventilation on the growth and development, physiology, activities of antioxidant enzymes, and contents of mineral nutrients of carnation (Dianthus caryophyllus L.) 'Marble Beauty'. Single node cuttings stuck into the plant growth regulator (PGR)-free MS medium in containers covered with caps with or without a ventilation filter were cultured first four weeks under white and then additional four weeks under either white (control), blue, red, or red + blue light emitting diodes (LEDs) for 56 days. Interestingly, a ventilated culture condition not only reduced the percentage of the hyperhydricity, but also increased the total chlorophyll content (Chl a + Chl b) of the plantlets as compared to the non-ventilated condition. In addition, blue LEDs produced plantlets with the greatest number of shoots and red LEDs produced plantlets with the greatest shoot length. The quality of plantlets was improved under a ventilation condition. Besides, under a ventilated condition, red + blue LEDs raised APX activity, and blue LEDs not only raised the activity of the CAT, but also increased tissue contents of such elements as K, Ca, Mg, Zn, Mn and Fe. The red LEDs increased contents of B and Si under a ventilated condition, and Na accumulation under a non-ventilated condition. Thus, including blue or red LEDs as the light source in a ventilated culture condition will produce plantlets of carnation 'Marble Beauty' in vitro with improved quality.

Phenolic Compounds Production, Enhancement and Its Antioxidant Activity of Blue Berry Powder with Bacillus subtilis Light Mediated Fermentation Compounds

  • Elumalai, Punniyakotti;Lim, Jeong-Muk;Mohan, Harshavardhan;Lee, Jeong-Ho;Oh, Byung-Taek
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.66-66
    • /
    • 2018
  • Light fermentation has been conducted under different light conditions such as normal dark light, white light, and light emitting diodes (LEDs) various color (blue, green, red, white on blueberry powder with fermenting bacteria Bacillus subtilis (B2). The bacteria B2 was isolated and identified by 16S rRNA sequencing method. RYRP biologically converted to secondary metabolites through light fermentation in the presence of Bacillus subtilis, the bacteria actively involved in bioconversion process. LEDs fermentation to enhance the production of phenolic content while comparing to normal dark and white light. Among the different color LEDs, blue LEDs mediated fermentation showed higher amount of total phenolic and flavonoid content. Then blue LEDs mediated fermented compound were characterized by FTIR and GC-MS, subsequently the compound was analyzed antioxidant activity tests and the antioxidant activity exhibited higher. This is the first study to demonstrate that B. subtilis-LEDs mediated fermentation is useful for facilitating phenolic compound production and enhancing antioxidant activity, which may have greater application fermentation fields.

  • PDF

Fabrication and Characteristics of Blue-Green and Green LEDs using ZnSSe:Te Active Layers

  • Lee, Hong-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.991-996
    • /
    • 2010
  • Blue-green and green LEDs have been successfully fabricated grown by MBE, which has introduced the $ZnS_ySe_{1-x-y}:Te_x$ (x=0.04, y~0.11-0.14) ternary epilayer as an active layer. From the I-V characteristics, the built-in voltage (~2.1 V) is very small compared to other wide bandgap LEDs, such as commercial InGaN-based LEDs (>3.2 V). From the C-V profiling, the effective carrier concentration in the p-type ZnMgSSe cladding layer was evaluated as ${\sim}2.8{\times}10^{16}\;cm^{-3}$ for the present LEDs.

Effects of Light Emitting Diodes on Growth and Morphogenesis of in vitro Seedlings in Platycodon grandiflorum (도라지 배양묘의 생장 및 형태형성에 미치는 발광다이오우드의 효과)

  • 은종선;김영선;김용현
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.71-75
    • /
    • 2000
  • To clarify the possibility of plant production under red, green. blue, and red+blue using light emitting diodes (LEDs) and fluorescent lamps (control), the effects of light quality on the growth and morphogenesis of in vitro seedlings in Piatycodon grandiflorum were examined. The plantlets grown under the LEDs resulted in taller plants with greater stem than fluorescent lamps. The shortest shoot length, 3.8 cm, was observed in the control and the longest one, 13.4 cm, in the red light. But the shoot length was 5.6 cm under red LED with supplemental blue(red+blue light). This results indicate that red LED may be suitable, in proper combination with other wavelengths of light. The root length under red light was significantly smaller among the treatments. The plantlets grown under red+blue light had lower shoot dry weight, higher dry matter than other lights-grown plantlets. Among the various growth parameters measered, there was an indication that leaf area was controlled by the LEDs. Leaf area of a plantlets developing under green light was about 2.4 times wider than that of plantlets grown under red LED (10.1 $\textrm{cm}^2$ in area). The dry matter rate per plantlet among the treatments was greater in plantlets grown under the red/blue LEDs in comparison with that grown under other LEDs. Chlorophyll contents in plantlets grown under the red, green, blue and red/blue LEDs were 2%, 7% 20% and 10% lower, respectively, than those in plant grown under fluorescent lamps.

  • PDF

Development of $Blue{\sim}Green$ LEDs by Controlling Te Cluster (Te Cluster 제어에 의한 청${\sim}$녹색 발광다이오드의 개발)

  • Lee, Hong-Chan;Lee, Sang-Tae;Kim, Yoon-Sik
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.51-52
    • /
    • 2005
  • Optical characteristics of excitonic blue and green emission of Te-doped ZnSSe:Te epitaxial layers, grown by molecular beam epitaxy, were investigated by photoluminescence (PL) measurements. The Te-doped ternary specimen shows strong blue or green emission (at 300K) which is assigned to $Te_1$ or $Te_n$ $(n{\geq}2)$ cluster cluster bound exciton, respectively. Bright green and blue light emitting diodes (LEDs) have been developed using ZnSSe:Te system as an active layer. The green LEDs exhibit a fairly long device lifetime (>2000 h) when operated at 3 $A/cm^2$ under CW condition at room temperature.

  • PDF

Wide bandgap III-nitride semiconductors: opportunities for future optoelectronics

  • Park, Yoon-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 2002
  • The world at the end of the $20^{th}$ Century has become "blue" Indeed, this past decade has witnessed a "blue rush" towards the development of violet-blue-green light emitting diodes (LEDs) and laser diodes (LDs) based on wide bandgap III-Nitride semiconductors. And the hard work has culminated with, first, the demonstration of commercial high brightness blue and green LEDs and of commercial violet LDs, at the very end of this decade. Thanks to their extraordinary properties, these semiconductor materials have generated a plethora of activity in semiconductor science and technology. Novel approaches are explored daily to improve the current optoelectronics state-of-the-art. Such improvements will extend the usage and the efficiency of new light sources (e.g. white LEDs), support the rising information technology age (e.g. high density optical data storage), and enhance the environmental awareness capabilities of humans (ultraviolet and visible photon detectors and sensors). Such opportunities and many others will be reviewed in this presentation.

Improved White Light Emitting Diode Characteristics by Coating GdAG:Ce Phosphor

  • Joshi, Charusheela;Yadav, Pooja;Moharil, S.V.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.69-72
    • /
    • 2014
  • White LEDs, based on blue LED chips coated with a yellow emitting phosphor (YAG:Ce), have several disadvantages. In this paper, we report the improvement in CRI [Color Rendition Index] using $GdAl_5O_{12}:Ce$ (GdAG:Ce) and related phosphors for blue LEDs. A modified combustion synthesis route using mixed fuel was used for synthesis route. By using this procedure, we formed the desired compounds in a single step. LEDs were then fabricated by coating the blue LED chips (CREE 470 nm, 300 micron) with the GdAG:Ce phosphor dispersed in epoxy resin. The CRI typically between 65~70 for the YAG:Ce based LED was improved to 87 for LEDs fabricated from the Gd(Al,Ga)G phosphors.