• 제목/요약/키워드: Blue host

검색결과 173건 처리시간 0.025초

Fluorescent White OLEDs with a High Color-rendering Index Using a Silicon-Cored Anthracene Derivative as a Blue Host

  • Kwak, Jeong-Hun;Lyu, Yi-Yeol;Lee, Hyun-Koo;Char, Kook-Heon;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • 제11권3호
    • /
    • pp.123-127
    • /
    • 2010
  • Fluorescent white organic light-emitting diodes showing high color-rendering indices (CRIs) of up to 81 was demonstrated, with a silicon-cored anthracene derivative (PATSPA) doped with DPAVBi utilized as the deep-blue host and dye materials, and the commercial dyes rubrene and DCM2 utilized as the orange- and red-light-emitting dyes. The devices, consisting of three emissive layers, showed bright-white-light emission, but the ratio of the blue peak to the orange and red peaks changed with the current density and the thickness of the blue emissive layer. A high CRI was achieved with the use of a deep-blue emitter doped in a novel host and by optimizing the blue-layer thickness. The device with a blue-layer thickness of 10 nm showed the Commission Internationale de l'Eclairage (CIE) color coordinate of (0.33, 0.35), a high CRI of 81, and a moderate external quantum efficiency of 2% at a current density of $2.5\;mA/cm^2$.

Interlayer Engineering with Different Host Material Properties in Blue Phosphorescent Organic Light-Emitting Diodes

  • Lee, Jong-Hee;Lee, Jeong-Ik;Lee, Joo-Won;Chu, Hye-Yong
    • ETRI Journal
    • /
    • 제33권1호
    • /
    • pp.32-38
    • /
    • 2011
  • We investigated the light-emitting performances of blue phosphorescent organic light-emitting diodes, known as PHOLEDs, by incorporating an N,N'-dicarbazolyl-3,5-benzen interlayer between the hole transporting layer and emitting layer (EML). We found that the effects of the introduced interlayer for triplet exciton confinement and hole/electron balance in the EML were exceptionally dependent on the host materials: 9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole, 9-(4-tert-butylphenyl)-3,6-ditrityl-9H-carbazole, and 4,4'-bis-triphenylsilanyl-biphenyl. When an appropriate interlayer and host material were combined, the peak external quantum efficiency was greatly enhanced by over 21 times from 0.79% to 17.1%. Studies on the recombination zone using a series of host materials were also conducted.

Fluorescent Blue Materials for Efficient Organic Light-Emitting Diode with High Color Purity

  • Choi, Kyung-Sun;Lee, Chan-Hyo;Lee, Kwan-Hee;Park, Su-Jin;Son, Seung-Uk;Chung, Young-Keun;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권10호
    • /
    • pp.1549-1552
    • /
    • 2006
  • We report a new series of blue dopants composed of both electron donating and electron accepting moieties in one molecule, based on nalidixic acid. The EL device derived from the dopant exhibits pure blue light emission (0.15, 0.14) The current efficiency is estimated to be 3.88 cd/A at 100 $cd/m^2$, which shows remarkable enhancement, compared to that of the host itself (2.5 cd/A at 100 $cd/m^2$) under the same conditions. These results demonstrate that the incorporation of a proper guest into the host in a guest-host doped system improves not only the purity of the fluorescent blue emission but also elevates its quantum efficiency, thus improving the OLED performance.

Electroluminescent Properties of Spiro[fluorene-benzofluorene]-Containing Blue Light Emitting Materials

  • Jeon, Soon-Ok;Lee, Hyun-Seok;Jeon, Young-Min;Kim, Joon-Woo;Lee, Chil-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.863-868
    • /
    • 2009
  • New spiro[fluorene-7,9′-benzofluorene]-based blue host material, 5-phenyl-spiro[fluorene-7,9′-benzofluorene] (BH-1P), was successfully prepared by reacting 5-bromo-spiro[fluorene-7,9′-benzofluorene] (1) with phenyl boronic acid through the Suzuki reaction. 5-(N,N-Diphenyl)amino-spiro[fluorene-7,9′-benzofluorene] (BH-1DPA) and diphenyl-[4-(2-[1,1;4,1]terphenyl-4-yl-vinyl)-phenyl]amine (BD-1) were used as dopant materials. 2,5-Bis-(2',2"- bipyridin-6-yl)-1,1-diphenyl-3,4-diphenylsilacyclopentadiene (ET4) and Alq3 were used as electron transfer materials. Their UV absorption, photoluminescence and thermal properties were examined. The blue OLEDs with the configuration of ITO/DNTPD/$\alpha$-NPD/BH-1P:5% dopant/$Alq_3$ or ET4/LiF-Al prepared from the BH-1P host and BH-1DPA and BD-1 dopants showed a blue EL spectrum at 452 nm at 10 V and a luminance of 923.9 cd/$m^2$ with an efficiency of 1.27 lm/W at a current density of 72.57 mA/$cm^2$.

TMP-BiP 호스트와 DJNBD-1 도펀트를 이용한 청색 OLED의 제작과 특성평가 (Fabrication and Characterization of Blue OLED using TMP-BiP Host and DJNBD-1 Dopant)

  • 장지근;안종명;신상배;장호정;공수철;신현관;공명선;이칠원
    • 반도체디스플레이기술학회지
    • /
    • 제6권2호
    • /
    • pp.19-23
    • /
    • 2007
  • The blue emitting OLEDs using TMP-BiP[(4'-Benzoylferphenyl-4-yl)phenyl-methanone-Diethyl(biphenyl-4-ymethyl) phosphonate] host and DJNBD-1 dopant have been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as a hole injection material and NPB [N,N'-bis(1-naphthyl)N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as a hole transport material were deposited on the ITO(indium tin oxide)/glass substrate by vacuum thermal evaporation method. Followed by the deposition, blue color emission layer was deposited using TMP-BiP as a host material and DJNBD-1 as a dopant. Finally, small molecule OLEDs with structure of $ITO/2-TNATA/NPB/TMP-BiP:DJNBD-l/Alq_3/LiF/Al$ were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. The effect of dopant into host material of the blue OLEDs was studied. The blue OLEDs with DJNBD-1 dopant showed that the maximum current and luminance were found to be about 34 mA and $8110\;cd/m^2$ at 11 V, respectively. In addition, the color coordinate was x=0.17, y=0.17 in CIE color chart, and the peak emission wavelength was 440 nm. The maximum current efficiency of 2.15 cd/A at 7 V was obtained in this experiment.

  • PDF

Correlation between host materials and device performances of phosphorescent white organic light-emitting diodes with blue/orange/blue stacked emitting structure

  • Joo, Chul-Woong;Kim, Sung-Hyun;Yook, Kyoung-Soo;Jeon, Soon-Ok;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.439-442
    • /
    • 2008
  • A mixed host structure of TCTA and TPBI was used in orange emitting layer and host composition was critical to device performances of PHWOLEDs. PHWOLEDs with TPBI host in orange emitting layer showed high quantum efficiency of 10.3 % at $1000\;cd/m^2$ with little change of CIE coordinates of (0.32, 0.34) from $100\;cd/m^2$ to $10,000\;cd/m^2$.

  • PDF

Improved EL efficiency and operational lifetime of top-emitting white OLED with a co-doping technology

  • Lee, Meng-Ting;Tseng, Mei-Rurng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1411-1414
    • /
    • 2007
  • We have developed a top-emitting white organic electroluminescent device (TWOLED) incorporating a low-reflectivity molybdenum (Mo) anode and doped transport layers as well as a dual-layer architecture of doped blue and yellow emitters with the same blue host. The EL efficiency and operational lifetime of TWOLED can be enhanced by a factor of 1.2 and 3.4 than that of standard TWOLED, respectively, with a co-doping technology in yellow emitter by doping another blue dopant. The enhancement in device performances can be attributed to improve the energy transfer efficiency from blue host to yellow dopant through a blue dopant as medium in yellow emitter.

  • PDF

청색 인광물질을 이용한 유기 발광 다이오드의 효율개선에 관한 연구 (A study on the improvement in the efficiency of blue phosphorescent organic light-emitting diodes)

  • 양미연;김준호;하윤경;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1070-1073
    • /
    • 2004
  • In this study, Tri(1-phenylpyrazolato)iridium $(Ir(ppz)_3)$ was prepared for the pure blue phosphorescent dopant and various host materials were used for the appropriate energy alignment. Although the luminance was pure blue with the CIE coordinates of x = 0.158, y = 0.139, device efficiencies didn't improve yet. Instead of finding the proper host materials, the alteration of structure of OLEDs affected the improvement of electrical and optical characteristics of the devices. It was worthy that insertion the exciton formation zone with the host material between the emitting zone and the exciton blocking layer. The device with a structure of ITO/NPB/Ir(ppz)3 doped in CBP/CBP for the exciton formation zone/BCP/Liq/Al was fabricated and the characteristics were observed compared with the devices without the exciton formation zone. When CBP was used for the exciton formation zone, the device efficiency reached to over 0.25 cd/A. While the device used CBP only for the host showed the luminous efficiency of under 0.11 cd/A

  • PDF

GDI Host-Dopant를 이용한 청색 유기발광다이오드의 제작 (Fabrication of Blue OLED with GDI Host and Dopant)

  • 장지근;신세진;강의정;김희원;서동균;임용규;장호정
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.773-776
    • /
    • 2005
  • In the fabrication of high performance Blue organic light emitting diode, 2-TNATA[4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as hole injection material and NPB[N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as hole transport material were deposited on the ITO (Indium Tin Oxide)/Glass substrate by vacuum evaporation. And then, Blue color emission layer was deposited using GDI602 as a host material and GDI691 as a dopant. Finally, small molecule OLED with the structure of ITO/2-TNATA/NPB/GDI602+GDI691/Alq3/LiF/Al was obtained by in-situ deposition of Alq3, LiF and Al as electron transport material, electron injection material and cathode, respectively. Blue OLED fabricated in our experiments showed the color coordinate of CIE(0.14, 0.16) and the maximum luminescence efficiency of 1.06 lm/W at 11 V with the peak emission wavelength of 464 nm.

  • PDF

Blue OLEDs Utilizing Spiro[fluorene 7,9'-benzofluorene]-type Compounds as Hosts and Dopants

  • Kim, Joo-Han;Jeon, Young-Min;Jang, Ji-Geun;Ryu, Sang-Ouk;Chang, Ho-Jung;Lee, Chil-Won;Kim, Joon-Woo;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권3호
    • /
    • pp.647-652
    • /
    • 2009
  • A novel spiro-type host material, 5-[4-(1-naphthyl)phenyl]-spiro[fluorene-7,9'-benzofluorene] (BH-1PN) and three new dopants, namely, 5-[diphenylamino)phenyl]-spiro[fluorene-7,9'-benzofluorene] (BH-1TPA), 5-[4-(N-phenyl (m-tolyl)amino]-spiro[fluorene-7,9'-benzofluorene] (BH-1MDPA) and 5-[(N-phenyl)-2-naphthyl]amino-spiro[fluorene- 7,9'-benzofluorene] (BH-1NPA) were designed and successfully prepared using the Suzuki or amination reactions. The electroluminescence characteristics of BH-1PN as a blue host material doped with each of the blue dopants were evaluated. The structure of the device is ITO/DNTPD/NPB/BH-1PN:5% dopant/Alq3/Al-LiF. The device obtained from BH-1PN doped with diphenyl-[4-(2-[1,1;4,1]terphenyl-4-yl-vinyl)phenyl]-amine (BD-1) showed good color purity, efficiency, luminance, and current-density characteristics.