• Title/Summary/Keyword: Blue device

Search Result 400, Processing Time 0.026 seconds

Blue organic light emitting diodes with carbazole based small molecules and color tunning by controlled side group

  • Kim, Y.B.;Ahn, Y.J.;Park, J.H.;Khang, M.W.;Woo, H.S.;Park, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.514-516
    • /
    • 2003
  • We have fabricated an air stable blue emitting organic electroluminescent devices (OLEDs) with a carbazole based emitting molecule, Bis(3-N-ethylcarbazolyl)terephthalidene (BECP). Our device emits strong blue at 472 nm with the luminance efficiency of near 1 lm/W at a voltage and current density of 8 V and 5.7 mA/cm2, respectively, reaching the brightness up to 5000 cd/m2 at 270 mA/cm2. Finally, in order to tune the emission color from blue to green, we have used Bis(3-N-ethylcarbazolyl)cynoterephthalidene (BECCP), a derivative of BECP by adding cyno group in side chain, and compared the electroluminscence (EL) of OLEDS prepared by BECCP to that of BECP based OLEDs.

  • PDF

Stable Blue Electroluminescence from Fluorine-containing Polymers (불소 함유된 고분자를 이용한 안정한 청색 발광 유기 EL)

  • Kang In-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.568-573
    • /
    • 2006
  • We have synthesized new blue light emitting random copolymers, poly(9,9'-n-dioctylfluorene-co-perfluorobenzene-1,4-diyl)s (PFFBs), via Ni(0)-mediated coupling reactions. The weight-average molecular weights ($M_w$) of the PFFB copolymers ranged from 9,000 to 15,000. The PFFB copolymers dissolved in common organic solvents such as THF and toluene. The PL emission peaks of the PFFB copolymers were at around 420, 440, and 470 nm. EL devices were fabricated in ITO/PEDOT/polymer/Ca/Al configurations using these polymers. These EL devices were found to exhibit pure blue emission with approximate CIE coordinates of (0.15, 0.11) at $100cd/m^2$. The blue emissions of these devices might be due to the restriction of the polymer chains to aggregation by introducing of the highly electronegative fluorine moieties. The maximum brightnesses of the PFFB copolymer devices ranged from 140 to $3600cd/m^2$ with maximum efficiencies from 0.2 to 0.6 cd/A. The enhanced efficiency of the PFFB (8/2) copolymer device results from the inhibition of excimer formation by the introduction of the electronegative fluorine moieties into the copolymers.

Effect of the Length of Side Group Substitution on Optical and Electroluminescene Properties

  • Shin, Hwangyu;Kang, Hyeonmi;Kim, Beomjin;Park, Youngil;Yu, Young-Jun;Park, Jongwook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3041-3046
    • /
    • 2014
  • Blue emitting materials, 9,10-bis-biphenyl-4-yl-anthracene (AC-P), 9,10-bis-[1,1';4',1"]terphenyl-4-yl-anthracene (AC-DP), and 9,10-bis[3",5"-deiphenyltriphenyl-4'-yl]anthracene (AC-TP) were synthesized through boration and Suzuki aryl-aryl coupling reaction. EL performance of blue light-emitters was optimized and improved by varying the chemical structures of the side groups. In the thin film state, the three materials exhibit $PL_{max}$ values in the range of 442-456 nm. EL device with the synthesized compounds in the following configuration was fabricated: ITO/4,4',4"-tris(N-(2-naphthyl)-N-phenylamino)triphenylamine (2-TNATA) 60nm/N,N'-bis (naphthalene-1-yl)-N,N'-bis(phenyl)benzidine (NPB) 15nm/synthesized blue emitting materials (30nm)/1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBi) 20nm/LiF 1nm/Al 200nm. The current efficiency and C.I.E. value of AC-TP were 3.87 cd/A and (0.15, 0.12). A bulky and non-planar side group helps to prevent ${\pi}-{\pi}^*$ stacking interaction, which should lead to the formation of more reliable amorphous film. This is expected to have a positive effect on the high efficiency of the operating OLED device.

A Study on the Characteristic Analysis of Blue OLED for the Luminous Traffic Safety Mark (발광형 교통안전표지용 청색 OLED의 특성분석에 관한 연구)

  • Kang, Myung-Goo;Kim, Jung-Yeoun;Oh, Hwan-Sool
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.138-145
    • /
    • 2007
  • Luminous traffic safety mark is restricted to use only the place that has a thick fog, many night traffic accidents, limited field of view due to structure of road. Recently, LEDs are used for luminous traffic safety mark, but we propose an organic LED for a novel luminous traffic safety mark in the near future. The device structure was $ITO/2-TNATA(500{\AA})/{\alpha}-NPD(200{\AA})/DPVBi(300{\AA})/BCP(10{\AA})/Alq_3(200{\AA})/LiF(10{\AA})/Al:Li(1000{\AA})$. The characteristics of the device are most efficient on occasion of using $N_2$ gas plasma treatment. Current density is $240.71mA/cm^2$ luminance $10,550cd/m^2$, and current efficiency 3.53cd/A at an applied voltage of 10V. The maximum EL wavelength of the fabricated blue organic light-emitting device is 456nm. CIE color coordinates are x=0.1449 and y=0.1633, which is similar to NTSC deep-blue color with CIE color coordinates of x=0.14 and y=0.08.

  • PDF

Effect of LED light on the inactivation of Bacillus cereus for extending shelf-life of extruded rice cake and simulation of the patterns of LED irradiation by various arrays of LEDs (압출떡의 유통기한 연장을 위한 LED 조사의 Bacillus cereus 억제 효과 및 LED의 배열에 따른 빛의 조사 패턴 시뮬레이션)

  • Jung, Hwabin;Yuk, Hyun-Gyun;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.2
    • /
    • pp.181-186
    • /
    • 2019
  • The optimum design of LED device for irradiation of 460 nm blue light on extruded rice cake using simulation and the effect of the blue light on the inactivation of Bacillus cereus (B. cereus) group on the rice cake were investigated. The irradiated light intensity patterns on the surface area of the sample were simulated with three different LED arrays (centered, cross, and evenly spaced) and at various distances (22, 32, 42 mm) between the LED modules and the sample. In addition, the uniformity was calculated as Petri factor. The evenly spaced array resulted the most uniform light intensity pattern in the simulation, and the Petri factor of 32 and 42 mm of the distances showed higher than 0.9, which represents the ideal uniformity of LED device. The bacterial population of the rice cake decreased to less than the initial bacterial population during exposure to LED blue light, whereas the bacterial population of the control sample increased. The bacterial count of the rice cake after blue light irradiation for 24 h was 1.21 log CFU/g lower than the control sample. Petri factor increased with increase of the distance between the light source and sample, however, the reduction rate of B. cereus group decreased. Therefore, the design of LED device, that represented the Petri factor higher than 0.9 and inactivated the population of B. cereus group, with evenly spaced and 32 mm of distance between the light source and sample was suitable for extending shelf-life of rice cake.

A Study on the Bottom-Emitting Characteristics of Blue OLED with 7-Layer Laminated Structure (7층 적층구조 배면발광 청색 OLED의 발광 특성 연구)

  • Gyu Cheol Choi;Duck-Youl Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.244-248
    • /
    • 2023
  • Recently, displays play an important role in quickly delivering a lot of information. Research is underway to reproduce various colors close to natural colors. In particular, research is being conducted on the light emitting structure of displays as a method of expressing accurate and rich colors. Due to the advancement of technology and the miniaturization of devices, the need for small but high visibility displays with high efficiency in energy consumption continues to increase. Efforts are being made in various ways to improve OLED efficiency, such as improving carrier injection, structuring devices that can efficiently recombine electrons and holes in a numerical balance, and developing materials with high luminous efficiency. In this study, the electrical and optical properties of the seven-layer stacked structure rear-light emitting blue OLED device were analyzed. 4,4'-Bis(carazol-9-yl)biphenyl:Ir(difppy)2(pic), a blue light emitting material that is easy to manufacture and can be highly efficient and brightened, was used. OLED device manufacturing was performed via the in-situ method in a high vacuum state of 5×10-8 Torr or less using a Sunicel Plus 200 system. The experiment was conducted with a seven-layer structure in which an electron or hole blocking layer (EBL or HBL) was added to a five-layer structure in which an electron or hole injection layer (EIL or HIL) or an electron or hole transport layer (ETL or HTL) was added. Analysis of the electrical and optical properties showed that the device that prevented color diffusion by inserting an EBL layer and a HBL layer showed excellent color purity. The results of this study are expected to greatly contribute to the R&D foundation and practical use of blue OLED display devices.

Electrical and Optical Properties of Phosphorescent Organic Light-Emitting Devices with a TAPC Host

  • Kim, Tae-Yong;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.84-87
    • /
    • 2011
  • We fabricated phosphorescent organic light-emitting devices with a 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) host layer. Two kinds of devices, one of ITO/TAPC/TAPC:FIrpic/TAZ/LiF/Al (device A) and one of ITO/TAPC:FIrpic/TAPC/TAZ/LiF/Al (device B), were prepared to investigate electrical and optical properties. Iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic) and 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (TAZ) were used as a blue phosphorescent guest material and an electron transport layer, respectively. The TAPC layer in device B strongly contributes to whitish emission, higher driving voltage, and lower current efficiency characteristics compared with device A. The mechanisms of these electrical and optical characteristics of the devices were investigated.

Electroluminescent Devices Using a Polymer of Regulated Conjugation Length and a Polymer Blend

  • Zyung, Tae-Hyoung;Jung, Sang-Don
    • ETRI Journal
    • /
    • v.18 no.3
    • /
    • pp.181-193
    • /
    • 1996
  • A blue light emitting device has been successfully fabricated using a polymer with regulated conjugation length containing trimethylsilyl substituted phenylenevinylene units. Electroluminescence from the device has an emission maximum at 470 nm. The device shows typical diode characteristics with operating voltage of 20 V and the light becomes visible at a current density of less than $0.5;mA/cm^2$. The electroluminescence spectrum is virtually identical with the photoluminescence spectrum, indicating that the radiation mechanisms are the same for both. A light emitting device using the blend of a large band gap polymer and a small band gap polymer was also fabricated. Light emission from the small band gap polymer shows much improved quantum efficiency, but there is no light emission from the large band gap polymer. Quantum efficiency of the blend increases up to about two orders of magnitude greater than that of the small band gap polymer with increasing proportion of the large band gap polymer. The improvement in quantum efficiency is interpreted in terms of exciton transfer and the hole blocking behaviour of the large band gap polymer. Finally, we have fabricated a patterned flexible light emitting device using the high quantum efficiency polymer blend system.

  • PDF

Stabilization of the luminance efficiency in the blue organic light-emitting devices utilizing CBP and DPVBi emitting layers

  • Bang, H.S.;Choo, D.C.;Park, J.H.;Seo, J.H.;Kim, Y.K.;Kim, T.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1454-1456
    • /
    • 2007
  • The electrical and the optical properties of blue organic light-emitting devices (OLEDs) with a multiple emitting layer (EML) acting as electron and hole trapping layers were investigated. While the luminance efficiency of the OLEDs with a multiple EML was very stable, regardless of variations in the applied voltage.

  • PDF

Design and Synthesis of New Fluorene-Based Blue Light Emitting Polymer Containing Electron Donating Alkoxy Groups and Electron Withdrawing Oxadiazole

  • Kim, Yun-Hi;Park, Sung-Jin;Park, Jong-Won;Kim, Jin-Hak;Kwon, Soon-Ki
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.216-220
    • /
    • 2007
  • A new polyfluorene-based copolymer having 2-ethylhexyloxy-5-methoxy-l,4-phenylene as an electron donating group and 2,5-diphenyl-oxadiazole as an electron withdrawing group was synthesized by the Suzuki coupling reaction. The obtained copolymer was characterized by $^1H-NMR,\;^{13}C-NMR$, and IR-spectroscopy. The weight average molecular weight ($M_w$) of the obtained polymer was 18,600 with a polydispersity index of 1.5. The maximum photoluminescence of the solution and film of the polymer was observed at 453 nm and 456 nm, respectively. A double-layer device with the configuration, ITO/PEDOT/copolymer/Al, emitted blue light at 460 nm.