• 제목/요약/키워드: Blood pressure sensor

검색결과 114건 처리시간 0.03초

Development of a stroke output control algorithm using a fuzzy logic for a left ventricular assist device

  • Choi, Jae-Soon;Choi, Won-Woo;Park, Seong-Keun;Park, Seong-Keun;Min, Byoung-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.514-517
    • /
    • 1995
  • A new stroke output control algorithm with a fuzzy logic for an electrohydraulic left ventricular assist device(EH-LVAD) was developed. The EH-LVAD pumps out blood from left atrium actively. Excessive suction of blood may cause fatal damage in left atrium. The LVAD has to provide a maximal stroke output without collapse of left atrium. In this study a new fuzzy algorithm for predicting and detecting suction and doing proper action on LVAD without using an extra pressure sensor but with bellows pressure signal and motor current signal is developed. The performance of the fuzzy control algorithm is demonstrated by the results from mock circulatory experiments.

  • PDF

Towards Evolutionary Approach for Thermal Aware In Vivo Sensor Networks

  • Kamal, Rossi;Hong, Choong-Seon
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(D)
    • /
    • pp.369-371
    • /
    • 2012
  • Wireless sensor networks have taken immense interest in healthcare systems in recent years. One example of it is in an in vivo sensor that is deployed in critical and sensitive healthcare applications like artificial retina, cardiac pacemaker, drug delivery, blood pressure, internal heat calculation, glucosemonitoring etc. In vivo sensor nodes exhibit temperature that may be very dangerous for human tissues. However, existing in vivo thermal aware routing approaches suffer from hotspot creation, delay, and computational complexity. These limitations motivate us toward an in vivo virtual backbone, a small subset of nodes, connected to all other nodes and involved in routing of all nodes, -based solution. A virtual backbone is lightweight and its fault-tolerant version allows in vivo sensor nodes to disconnect hotspot paths and to use alternative paths. We have formulated the problem as m-connected k-dominating set problem with minimum temperature cost in in vivo sensor network. This is a combinatorial optimization problem and we have been motivated to use evolutionary approach to solve the problem.

u-EMS : 바이오 센서 네트워크 기반의 응급 구조 시스템 (u-EMS : An Emergency Medical Service based on Ubiquitous Sensor Network using Bio-Sensors)

  • 김홍규;문승진
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제13권7호
    • /
    • pp.433-441
    • /
    • 2007
  • 바이오센서는 생명공학 또는 의학 분야에서 사용되는 인간의 생체 신호를 감지할 수 있는 센서들로 의료기기에 주로 사용되는데, 최근 MEMS 기술의 발달로 작은 크기의 하드웨어에 센서 인터페이스, 프로세서, 무선통신, 배터리 등을 포함한 모듈을 센서노드(모트 : Mote)들로 구성된 센서기반 네트워크에서 바이오센서 네트워크로 응용분야를 확장하고 있다. 이에 본 논문에서는 바이오센서 기술과 센서네트워크 기술을 융합한 기술인 바이오 센서네트워크를 활용한 응급 구조 시스템의 설계 및 구현을 제안한다. 제안된 시스템에 사용된 바이오센서는 근전도(EKG), 혈압(Blood Pressure), 맥박(Heart Rate), 산소포화도(Pulse Oximeter), 혈당(Glucose)센서들로, 바이오센서에서 측정된 생체 신호를 센서네트워크 모트를 통해 데이타를 수집하고, 수집된 데이타를 이용하여 건강관리 측정 데이타로 활용하였으며 측정된 데이터는 무선단말기(PDA, 휴대폰), 전자액자 디스플레이장치 등에서 확인 가능하도록 구성하였다. 아울러, 제안한 u- 응급 구조 시스템의 유효성을 실험하기 위해서 사용자의 바이탈사인 정보와 주변 환경정보를 고려한 실험을 수행하였다.

Non-invasive Transcutaneous pCO2 Gas Monitoring System for Arterial Blood Gas Analysis

  • Bang, Hyang-Yi;Kang, Byoung-Ho;Eum, Nyeon-Sik;Kang, Shin-Won
    • 센서학회지
    • /
    • 제20권5호
    • /
    • pp.311-316
    • /
    • 2011
  • Monitoring the carbon dioxide concentration in arterial blood is vital for the evaluation and prevention of pulmonary disease. Yet, domestic pure arterial blood carbon dioxide sensor technologies are not being developed, instead all sensors are imported. In this paper, we develop a real time monitoring system for arterial blood partial pressure of carbon dioxide($pCO_2$) gas from the wrist by using a carbon micro-heater. The micro-heater was fabricated with a thickness of 0.3 ${\mu}m$ in order to collect the carbon dioxide under the skin. The micro-heater has been designed to perform temperature compensation in order to prevent damage to the skin. Two clinical trials of the system were undertaken. As a result, we demonstrated that a portable, transcutaneous carbon dioxide analysis($TcpCO_2$) device produced domestically is possible. In addition, this system reduced the analysis time significantly. Carbon films could reduce the unit price of these sensors by replacing the gold film used in foreign models. Also, we developed a real time monitoring system which can be used with optical biosensors for medical diagnostics as well as gas sensors for environmental monitoring.

Continuous Blood Pressure Monitoring using Pulse Wave Transit Time

  • Jeong, Gu-Young;Yu, Kee-Ho;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.834-837
    • /
    • 2005
  • In this paper, we describe the method of non-invasive blood pressure measurement using pulse wave transit time(PWTT). PWTT is a new parameter involved with a vascular that can indicate the change of BP. PWTT is measured by continuous monitoring of ECG and pulse wave. No additional sensors or modules are required. In many cases, the change of PWTT correlates with the change of BP. We measure pulse wave using the photo plethysmograph(PPG) sensor in an earlobe and we measure ECG using the ECG monitoring device our made in the chest. The measurement device for detecting pulse wave consists of infrared LED for transmitted light illumination, pin photodiode as light detector, amplifier and filter. We composed 0.5Hz high pass, 60Hz notch and 10Hz low pass filter. ECG measurement device consists of multiplexer, amplifier, filter, micro-controller and RF module. After amplification and filtering, ECG signal and pulse wave is fed through micro-controller. We performed the initial work towards the development of ambulatory BP monitoring system using PWTT. An earlobe is suitable place to measure PPG signal without the restraint in daily work. From the results, we can know that the dependence of PWTT on BP is almost linear and it is possible to monitoring an individual BP continuously after the individual calibration.

  • PDF

Radial Electrical Impedance: A Potential Indicator for Noninvasive Cuffless Blood Pressure Measurement

  • Huynh, Toan Huu;Chung, Wan-Young
    • 센서학회지
    • /
    • 제26권4호
    • /
    • pp.239-244
    • /
    • 2017
  • Noninvasive, cuffless, and continuous blood pressure (BP) monitoring is essential to prevent and control hypertension. A well-known existing method for this measurement is pulse transit time (PTT), which has been investigated by many researchers as a promising approach. However, the fundamental principle of the PTT method is based on the time interval taken by a pulse wave to propagate between the proximal and distal arterial sites. Consequently, this method needs an independent system with two devices placed at two different sites, which is a problem. Even though some studies attempted to synchronize the system, it is bulky and inconvenient by contemporary standards. To find a more sensitive method to be used in a BP measurement device, this study used radial electrical bioimpedance (REB) as a potential indicator for BP determination. Only one impedance plethysmography channel at the wrist is performed for demonstrating a ubiquitous BP wearable device. The experiment was evaluated on eight healthy subjects with the ambulatory BP monitor on the upper arm as a reference. The results demonstrated the potential of the proposed method by the correlation of estimated systolic (SBP) and diastolic (DBP) BP against the reference at $0.84{\pm}0.05$ and $0.83{\pm}0.05$, respectively. REB also tracked the DBP well with a root-mean-squared-error of $7.5{\pm}1.35mmHg$.

A Cell Phone-based ECG, Blood Pressure Monitoring System for Personal Healthcare Applications using Wireless Sensor Network Technology

  • Toh, Sing-Hui;Lee, Seung-Chul;Chung, Wan-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.505-508
    • /
    • 2008
  • Electrocardiogram (ECG) and blood pressure (BP) are main vital signs which are the standards in most medical settings in assessing the most basic body functions. Multi parameters are desired in providing more information for health professionals in order to detect or monitor medical problems of patients more precisely. This study urges us to develop a robust wireless healthcare monitoring system which has multiple physiological signs measurements on real time that applicable to various environments which integrates wireless sensor network technology and code division multiple access (CDMA) network with extended feature of locally standalone diagnosis algorithms that implemented in tell phone. ECG signal and BP parameter of the patients are routinely be monitored, processed and analyzed in details at cell phone locally to produce useful medical information to ease patients for tracking and future reference purposes. Any suspected or unknown patterns of signals will be immediately forwarded to hospital server using cell phone for doctors' evaluation. This feature enables the patients always recognize the importance of self-health checking so that the preventive actions can be taken earlier through this analytic information provided by this monitoring system because "Prevention is better than Cure".

  • PDF

노인 복지를 위한 응급 상황 호출 프로그램의 개발 및 구현 (Development and Implementation of the Emergency Call Program for a Welfare for the Elderly)

  • 김정환;조면균;김식
    • 대한임베디드공학회논문지
    • /
    • 제8권2호
    • /
    • pp.79-85
    • /
    • 2013
  • This paper proposes a system that utilizes USN(Ubiquitous Sensor Network), Bluetooth and smart phone to improve the function of senior houses. In typical approach, a system in a senior house either directly accesses the status of elderly people by its sensor or is alerted by elderly people who trigger an emergency bell, derive a decision and take an appropriate action. In addition, it is possible for a designated social worker to check the status of senior patients through monitoring system connected by UTP(Unshielded Uwisted Pair) cables, but the responsible person has to be present to monitor patients' status. However, the new system, suggested in this paper, embed Bluetooth function in a blood pressure gauge, thus the smart phone receives patients' health information such as blood pressure through Bluebooth, if any abnormal event occurs. Consequently, the smart phone sends SMS(Short Message Service) to a responsible social worker or a designated hospital. When this program in the paper becomes a reality, an unmanned system that is able to determine suitable actions for certain events will be established, even if a social worker were absence.

Development and physiological assessments of multimedia avian esophageal catheter system

  • Nakada, Kaoru;Hata, Jun-ichi
    • Journal of Multimedia Information System
    • /
    • 제5권2호
    • /
    • pp.121-130
    • /
    • 2018
  • We developed multimedia esophageal catheters for use with birds to measure and record ECG and angular velocity while anesthesized, at rest, and in flight. These catheters enable estimates of blood pressure based on readings given by an angular velocity sensor and by RR intervals of ECG affected by EMG. In our experiments, the catheters had the following characteristics: 1. Esophageal catheters offer a topological advantage with 8-dB SNR improvement due to elimination of electromyography (EMG). 2. We observed a very strong correlation between blood pressure and the angular velocity of esophageal catheter axial rotation. 3. The impulse conduction pathway (Purkinje fibers) of the cardiac ventricle has a direction opposite to that of the mammalian pathway. 4. Sympathetic nerves predominate in flight, and RR interval variations are strongly suppressed. The electrophysiological data obtained by this study provided especially the state of the avian autonomic nervous system activity, so we can suspect individual's health condition. If the change of the RR interval was small, we can perform an isolation or screening from the group that prevent the pandemics of avian influenza. This catheter shall be useful to analysis an avian autonomic system, to perform a screening, and to make a positive policy against the massive infected avian influenza.

유비쿼터스 센서 네트워크를 이용한 생리학적 데이터 측정 시스템의 설계 및 구현 (A Design and Implementation of Physiological Data Measurement System using Ubiquitous Sensor Network)

  • 민경우;서정희;박흥복
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.852-855
    • /
    • 2010
  • 현재 컴퓨터 네트워크 기술의 비약적인 발전에 힘입어 USN은 시간과 장소에 구애받지 않으며 사용자가 컴퓨터나 네트워크를 인식하지 못하고 통신 환경에 접속할 수 있는 수준에 까지 이르게 되었다. 더욱이 지금은 개개인의 건강에 관심이 높아지고 있어 건강을 관리하고 예방할 수 있는 의료 분야에서도 USN의 기술 발전과 더불어 다양한 분야에서의 적용이 시도 되고 있다. 본 논문은 병원에 입원한 환자를 관리하는 의사나 간호사가 손쉽게 환자의 혈압 및 혈당에 관련된 생리학적 데이터를 측정하고 관리할 수 있게 유비쿼터스 센서 네트워크 기반의 RF 통신을 이용한 시스템을 설계하고 구현한다. 또한 MsSQL 데이터베이스를 이용하여 환자에게서 수동 및 능동적으로 측정한 혈압 및 혈당 정보를 저장하고 관리할 수 있는 데이터베이스를 설계한다. 따라서 환자의 생리학적 데이터를 실시간으로 관리하고 응급상황에 즉각적으로 대처할 수 있으므로 환자들에 대한 의료 서비스 향상에 기여할 뿐만 아니라 의료서비스 환경에 대한 패러다임 변화를 기대할 수 있다.

  • PDF