• Title/Summary/Keyword: Blood pressure monitor

Search Result 106, Processing Time 0.029 seconds

Effect of Non-perceptual Sensory Stimulation Intensity Using Transcutaneous Electrical Nerve Stimulation on Cerebral Blood Flow (경피신경전기자극기를 이용한 비지각적 감각자극 강도가 뇌혈류에 미치는 영향)

  • Ju-Yeon Jung;Chang-Ki Kang
    • Science of Emotion and Sensibility
    • /
    • v.27 no.2
    • /
    • pp.81-90
    • /
    • 2024
  • In this study, we aimed to determine the effect on cerebral blood vessels of various stimulus intensities using transcutaneous electrical nerve stimulation (TENS). In particular, we wanted to monitor changes in blood flow and structural changes in the blood vessels in the common carotid artery (CCA) through low-intensity electrical stimulation that can cause non-perceptual sensory stimulation. Twenty-four healthy adults in their 20s participated in this study. Three stimulus intensities (below the sensory threshold, at the sensory threshold, and above the sensory threshold) were applied in random order. Changes in blood flow velocity according to the intensity of TENS stimulus were measured by placing the Doppler ultrasound transducer 1 cm below the CCA bifurcation, and the vascular structure was measured using B-mode imaging. C-mode Doppler and B-mode images were acquired before, during, and after the intervention for each stimulus, and changes in blood pressure were measured in each session. As a result, it was confirmed that peak systolic velocity (PSV) decreased significantly after the intervention in non-perceived sensory stimulation below the threshold, compared to other thresholds (p = .008). In particular, the PSV decreased by 3.04% on average compared to before stimulation (p = .011). However, there was no significant change in the CCA diameters before and after stimulation at all intensities. It was found that short-term, non-perceptual sensory stimulation was effective in reducing the blood flow rate without causing significant changes in either the blood vessel diameter or blood pressure. This change appears to be caused by a decrease in blood flow due to the effect of subtle vasodilation at non-perceptual sensory stimulation, and at stimulation intensity higher than that, the sympathetic nerves in the blood vessels are stimulated excessively and the blood vessels constrict. Therefore, this study can be rated as an important attempt to control blood flow through stimulation without such a psychological burden and sensory discomfort in the carotid area.

A Comparative Study about Cerebrovascular Reactivity from a Single Medication and Continuous Medication on Healthy Subjects (우황청심원(牛黃淸心元)의 단독투여 및 연속투여에 따른 정상인의 뇌혈관반응도의 비교연구)

  • Hwang, Jae-Woong;Kim, Chang-Hyun;Min, In-Kyu;Kim, Young-Ji;Leem, Jung-Tae;Na, Byong-Jo;Park, Sung-Wook;Park, Jung-Mi;Ko, Chang-Nam;Bae, Hyung-Sup;Jung, Woo-Sang;Moon, Sang-Kwan;Cho, Ki-Ho;Kim, Yong-Suk
    • The Journal of Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.95-108
    • /
    • 2009
  • Objectives: Uwhangchungsim-won (DC) has been used in various medical fields such as stroke, hypertension, atherosclerosis, autonomic imbalance and mental instability, etc. The aim of this study was to evaluate the effect of UC on cerebral hemodynamics and estimate the appropriate dose of UC. Methods: We studied changes of hyperventilation-induced cerebrovascular reactivity and mean blood flow velocity of middle cerebral arteries (MCA) using transcranial Doppler. We observed the changes of mean blood pressure, pulse rate and expiratory CO2 using S/5 Compact Anesthesia Monitor from 10 healthy young volunteers who were administered UC twice a day in the 1 st section and then once a day in the 2nd section. Results: Mean blood pressure tended to decrease at 1 hour and pulse rate tended to decrease at 2 hours after second administration. After 2 hours, mean blood pressure rose to state before administration, but pulse rate maintained from 2 hours to 4 hours. The changes were not statistically significant. Cerebral blood flow velocity in middle cerebral artery was not statistically significant after second administration. Cerebrovascular reactivity increased from 2 hours to 4 hours after second administration. Conclusions: This study provides that administration of UC twice a day is more effective on hyperventilation-induced cerebrovascular reactivity than administration of UC once a day.

  • PDF

Wearable Intelligent Systems for E-Health

  • Poon, Carmen C.Y.;Liu, Qing;Gao, Hui;Lin, Wan-Hua;Zhang, Yuan-Ting
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.246-256
    • /
    • 2011
  • Due to the increasingly aging population, there is a rising demand for assistive living technologies for the elderly to ensure their health and well-being. The elderly are mostly chronic patients who require frequent check-ups of multiple vital signs, some of which (e.g., blood pressure and blood glucose) vary greatly according to the daily activities that the elderly are involved in. Therefore, the development of novel wearable intelligent systems to effectively monitor the vital signs continuously over a 24 hour period is in some cases crucial for understanding the progression of chronic symptoms in the elderly. In this paper, recent development of Wearable Intelligent Systems for e-Health (WISEs) is reviewed, including breakthrough technologies and technical challenges that remain to be solved. A novel application of wearable technologies for transient cardiovascular monitoring during water drinking is also reported. In particular, our latest results found that heart rate increased by 9 bpm (P < 0.001) and pulse transit time was reduced by 5 ms (P < 0.001), indicating a possible rise in blood pressure, during swallowing. In addition to monitoring physiological conditions during daily activities, it is anticipated that WISEs will have a number of other potentially viable applications, including the real-time risk prediction of sudden cardiovascular events and deaths.

Development of Portable Wireless Emergency Units and Integrated System (휴대용 무선 응급 단말기 및 통합 시스템 개발)

  • Song, M.H.;Myoung, H.S.;Lee, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2161-2162
    • /
    • 2006
  • In this study, we developed five mobile units and an integrated system which can manage vital signs from each unit using Bluetooth wireless communication. The five kinds of mobile unit were so designed that each has different function to be applied according to the condition of patient properly. The mobile units can measure ECG signal of single or 12 channel, blood pressure, pulse and SpO2 signal from a patient. Also, to reduce the uncomfortable measurement, several types of units such as belt type, wrist type and necklace type were designed. Our proposed system can integrate and monitor several biological signals from different patient by using Bluetooth wireless communication simultaneously. The developed system was evaluated in the simulated emergent situation and showed the system can monitor 5 patients in maximum according to the data quality. It showed the possibilities that the developed system can be used effectively for emergency situation or in- or out-hospital transport of patient. In future, with the combination of mobile communication technique, a patient who is in emergency situation can be provided with proper first-aid and a doctor can pile information of patient and give better diagnosis and treatments.

  • PDF

Use of ADMSTM during sedation for dental treatment of an intellectually disabled patient: a case report

  • Chi, Seong In;Kim, Hyun Jeong;Seo, Kwang-Suk;Yang, Martin;Chang, Juhea
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.3
    • /
    • pp.217-222
    • /
    • 2016
  • Dental treatment is often performed under general anesthesia or sedation when an intellectually disabled patient has a heightened fear of treatment or has difficulty cooperating. When it is impossible to control the patient due to the severity of intellectual disability, conscious sedation is not a viable option, and only deep sedation should be performed. Deep sedation is usually achieved by propofol infusion using the target controlled infusion (TCI) system, with deep sedation being achieved at a slightly lower concentration of propofol in disabled patients. In such cases, anesthesia depth monitoring using EEG, as with a Bispectral Index (BIS) monitor, can enable dental treatment under appropriate sedation depth. In the present case, we performed deep sedation for dental treatment on a 27-year-old female patient with mental retardation and severe dental phobia. During sedation, we used BIS and a newly developed Anesthetic Depth Monitor for Sedation (ADMS$^{TM}$), in addition to electrocardiography, pulse oximetry, blood pressure monitoring, and capnometry for patient safety. Oxygen was administered via nasal prong to prevent hypoxemia during sedation. The BIS and ADMS$^{TM}$ values were maintained at approximately 70, and dental treatment was successfully performed in approximately 30 min.

Clinical Effects of Korean Ginseng, Korean Red Ginseng, Chinese Ginseng, and American Ginseng on Blood Pressure in Mild Hypertensive Subjects

  • Choi, Dong-Jun;Jung, Woo-Sang;Park, Seong-Uk;Han, Chang-Ho;Lee, Won-Chul;Cho, Ki-Ho
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.198-208
    • /
    • 2006
  • Background : Ginseng has traditionally been used in oriental countries to recover vital energy from Qi deficiency, and has shown various biomedical effects in the scientific literature. Recent reports suggest that ginseng could regulate blood pressure (BP), but much controversy still remains. Therefore, we intended to assess the anti-hypertensive effect of several ginseng types frequently used in clinics. We also investigated the anti-hypertensive effect on Koreans and Chinese, and by the body type according to Sasang Constitution Medicine (SCM). Methods : The study subjects were recruited from mildly hypertensive patients who exhibited pre-hypertension(120/80 to 139/89 mmHg) and stage I hypertension (140/90 to 159/99 mmHg) in Korea and China. After assigning the subjects into a Korean, a Chinese, a red, and an American ginseng group by randomization, we prescribed ginseng at a dose of 4.5 g per day for 4 weeks. To assess the anti-hypertensive effect, we compared the mean of systolic and diastolic BP between before and after ginseng medication using a 24-hour ambulatory blood pressure monitor (24 hr ABPM. We also monitored adverse effect and laboratory findings to secure the subjects' safety. In addition, all of the subjects in Korea consulted a specialist of Sasang Constitution Medicine to identify their constitutional type. Results : There were 64 subjects treated with Korean ginseng, 58 treated with Chinese ginseng, 33 treated with red ginseng, and 64 treated with American ginseng. Korean, Chinese, and American ginseng all reduced subjects' BP; Korean and Chinese ginseng showed more effect. The secondary analysis on the subjects' nationality revealed that all of the ginseng types showed more significant anti-hypertensive effect in Chinese patients than in Koreans. The third analysis on the constitutional type of SCM showed there was no significant difference in the effectiveness and the safety of ginseng among the constitutional types. Conclusions : We suggest ginseng, especially Panax ginseng without any steaming-drying process, could be useful for mild hypertension. Further, ginseng is safe regardless of subjects' constitutional type or type of ginseng within a dosage of 4.5g per day.

  • PDF

Effect of Gastrodia Elata BL Water Extract on Human Cerebral Blood Flow using Transcranial Doppler (천마추출물이 정상인의 뇌혈류에 미치는 영향)

  • Moon Sang-Kwan;Kim Young-Suk;Park Seong-Uk;Jung Woo-Sang;Ko Chang-Nam;Cho Ki-Ho;Bae Hyung-Sup
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.115-122
    • /
    • 2005
  • Background and objective: Gastrodiae Rhizoma (GR), the rhizoma of Gastrodia elata BL., is one of the popular drugs to treat headache, dizziness, blackout, numbness of limbs, hemiplegia, facial paralysis, dysphrasia, and infantile convulsions. It has been reported that it provides an antihypertensive effect and lowers cerebrovascular resistance in animal experiments. However, there has been no data about these effects with human subjects. In this study, the author examined the effect of Gastrodiae water extracts on blood pressure and cerebrovascular reactivity in human subjects. Methods: We selected 16 normal volunteers, who were divided into 2 groups: Gastrodiae extract administration group and placebo (creamy powder) group. Using transcranial Doppler ultrasound, we monitored changes of mean flow velocity and breath-holding induced CO2 reactivity of middle cerebral artery in both groups. Mean blood pressure, heart rate and PETCO2 were measured using Compact Anesthesia Monitor. In both groups, all evaluation was performed during basal condition, and repeated at 30, 60, and 90 min after administration. Results: Gastrodiae extract decreased CO2 reactivity after administration, reaching the lowest level at 90 minutes $(-29.1\%\;vs.\;basal\;level)$, which showed significant difference compared with the placebo group (p = 0.004). In the placebo group, the pulse rates tended to decrease over time (at 90 minute, $-5.2\%$ vs. basal level) while in the Gastrodiae group the values showed nearly no change, which showed significant difference between both groups (p = 0.036). However, the changes of mean blood pressure and mean flow velocity did not show significant difference between both groups. Conclusion : This study demonstrated that Gastrodiae extract significantly decreased breath-holding induced CO2 reactivity. This result suggests that the clinical effect of Gastrodiae extract might be caused by increasing cerebral blood flow via dilation of cerebral resistant vessels instead of antihypertensive effect.

  • PDF

The implementation of modular respiratory system for patient monitoring (환자감시를 위한 모듈형 호흡 시스템의 구현)

  • 박종억;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.503-506
    • /
    • 2001
  • There are four factors for patient monitoring : electrocardiography, blood pressure, temperature and respiration. While there are a lot of studies of E.C.C (electro-cardiography) monitoring system in the world, the studies of Respiratory system are not enough and leave much to be desired in the country. In this paper, we developed a respiratory system with the electrical impedance change of the lungs depending on the breath. Using the same electrode, we can monitor E.C.C and Respiration simultaneously, so we can monitor a patient's no-breathing state due to the central nerve paralysis in the emergency room easily. In this monitoring system, the analog part was made separated from the digital part for reducing power source noise and protecting patient from electric shock. The analog part consists of the several parts a high-frequency sine-wave generator, all amplifier for amplifying any impedance change signal, an analog processing part for rectifying and filtering. And the digital parts consists of three parts an AD convertor for converting analog signal to digital signal, digital filter, and a digital part for digital signal processing. This system's merits are using the same electrode with E.C.C and developing the multiple patient monitoring system easily.

  • PDF

Computer Models on Oxygenation Process in the Pulmonary Circulation by Gas Diffusion

  • Chang, Keun-Shik;Bae, Hwang
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • In this article we introduce computer models that have been developed in the past to determine the concentration of metabolic gases, the oxygen and carbon dioxide, along the pulmonary circulation. The terminal concentration of these gases in the arterial blood is related with the total change of the partial pressure of the same gases in the alveoli for the time beginning with inspiration and ending with expiration. It is affected not only by the ventilation-perfusion ratio and the gas diffusion capacity of the lung membrane but also by the pulmonary defect such as shunt, dead space, diffusion impairment and ventilation-perfusion mismatch. Some pathological pulmonary symptoms such as ARDS and CDPD can be understood through the mathematical models of these pulmonary dysfunctions. Quantitative study on the blood oxygenation process using various computer models is therefore of foremost importance in order to monitor not only the pulmonary health but also the cardiac output and cell metabolism. Reviewed in this paper include the basic and advanced methods that enable numerical study on the gas exchange and on the arterial oxygenation process, which might depend on the various heart and lung physiological conditions listed above.

  • PDF

Acute kidney injury and continuous renal replacement therapy in children; what pediatricians need to know

  • Cho, Myung Hyun;Kang, Hee Gyung
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.11
    • /
    • pp.339-347
    • /
    • 2018
  • Acute kidney injury (AKI) is characterized by abrupt deterioration of renal function, and its diagnosis relies on creatinine measurements and urine output. AKI is associated with higher morbidity and mortality, and is a risk factor for development of chronic kidney disease. There is no proven medication for AKI. Therefore, prevention and early detection are important. Physicians should be aware of the risk factors for AKI and should monitor renal function in high-risk patients. Management of AKI includes optimization of volume status and renal perfusion, avoidance of nephrotoxic agents, and sufficient nutritional support. Continuous renal replacement therapy is widely available for critically ill children, and this review provides basic information regarding this therapy. Long-term follow-up of patients with AKI for renal function, blood pressure, and proteinuria is recommended.