DOI QR코드

DOI QR Code

Effect of Non-perceptual Sensory Stimulation Intensity Using Transcutaneous Electrical Nerve Stimulation on Cerebral Blood Flow

경피신경전기자극기를 이용한 비지각적 감각자극 강도가 뇌혈류에 미치는 영향

  • Ju-Yeon Jung ;
  • Chang-Ki Kang
  • 정주연 (가천대학교 휴먼보건과학융합연구소) ;
  • 강창기 (가천대학교 의과학대학 방사선학과)
  • Received : 2024.04.19
  • Accepted : 2024.05.22
  • Published : 2024.06.30

Abstract

In this study, we aimed to determine the effect on cerebral blood vessels of various stimulus intensities using transcutaneous electrical nerve stimulation (TENS). In particular, we wanted to monitor changes in blood flow and structural changes in the blood vessels in the common carotid artery (CCA) through low-intensity electrical stimulation that can cause non-perceptual sensory stimulation. Twenty-four healthy adults in their 20s participated in this study. Three stimulus intensities (below the sensory threshold, at the sensory threshold, and above the sensory threshold) were applied in random order. Changes in blood flow velocity according to the intensity of TENS stimulus were measured by placing the Doppler ultrasound transducer 1 cm below the CCA bifurcation, and the vascular structure was measured using B-mode imaging. C-mode Doppler and B-mode images were acquired before, during, and after the intervention for each stimulus, and changes in blood pressure were measured in each session. As a result, it was confirmed that peak systolic velocity (PSV) decreased significantly after the intervention in non-perceived sensory stimulation below the threshold, compared to other thresholds (p = .008). In particular, the PSV decreased by 3.04% on average compared to before stimulation (p = .011). However, there was no significant change in the CCA diameters before and after stimulation at all intensities. It was found that short-term, non-perceptual sensory stimulation was effective in reducing the blood flow rate without causing significant changes in either the blood vessel diameter or blood pressure. This change appears to be caused by a decrease in blood flow due to the effect of subtle vasodilation at non-perceptual sensory stimulation, and at stimulation intensity higher than that, the sympathetic nerves in the blood vessels are stimulated excessively and the blood vessels constrict. Therefore, this study can be rated as an important attempt to control blood flow through stimulation without such a psychological burden and sensory discomfort in the carotid area.

본 연구에서는 경피신경전기자극(TENS)을 이용하여 다양한 자극 강도에 따른 뇌혈관에 미치는 영향을 확인하고자 한다. 특히 비지각적 감각의 전기자극을 통해 총경동맥(CCA)에서의 혈류 변화 및 혈관의 구조적인 변화를 확인해 보고자 한다. 본 연구에는 20대의 건강한 성인 24명이 참여하였다. 자극 강도는 감각 역치 미만, 감각 역치, 그리고 감각 역치 초과 세 가지를 각각 랜덤 순서로 적용하였다. 측정위치는 CCA 분기점의 1cm 하단에서 측정하였고, 혈류속도는 C-mode 도플러, 혈관의 구조는 B-mode 영상을 통해 측정하였다. 측정은 각각의 자극별로 중재 전, 중재 중, 그리고 중재 후에 수행하였고 각 세션마다 혈압의 변화를 측정하였다. 그 결과 최고 수축기 속도(PSV)는 역치미만의 비지각적 감각자극에서 중재 후 유의하게 감소함이 확인되었다(p = .008). 역치 미만의 자극 후 PSV는 자극 전보다 평균 3.04% 유의하게 감소한 것으로 나타났다(p = .011). 반면 CCA의 혈관 직경의 변화는 모든 강도에서 자극 전후 유의한 변화가 나타나지 않았다. 본 연구에서 적용한 단시간의 비지각적 전기자극이 혈관의 직경이나 혈압의 유의한 변화를 주지 않으면서 즉각적인 혈류속도 감소에 효과가 있음을 발견했다. 따라서 본 연구는 경동맥 부위에 환자의 불편함과 부작용이 없는 전기자극을 통해 뇌혈류의 조절이 가능하다는 것을 보여주는 중요한 시도로 평가될 수 있다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A2C1004355).

References

  1. Alba, M. A., Espigol-Frigole, G., Prieto-Gonzalez, S., Tavera-Bahillo, I., Garcia-Martinez, A., Butjosa, M., Hernandez-Rodriguez, J., & Cid, M. C. (2011). Central nervous system vasculitis: Still more questions than answers. Current Neuropharmacology, 9(3), 437-448. DOI: 10.2174/157015911796557920
  2. Allison, D. W., D'Amico, R. S., & Silverstein, J. W. (2022). Misconceptions in IONM Part II: Does anodal blocking occur and is bipolar stimulation necessary with intraoperative somatosensory evoked potentials? The Neurodiagnostic Journal, 62(3), 164-177. DOI: 10.1080/21646821.2022.2107862
  3. Avram, R., Tison, G. H., Aschbacher, K., Kuhar, P., Vittinghoff, E., Butzner, M., Runge, R., Wu, N., Pletcher, M. J., Marcus, G. M., & Olgin, J. (2019). Real-world heart rate norms in the Health eHeart study. Npj Digital Medicine, 2(1), Article 1. DOI: 10.1038/s41746-019-0134-9
  4. Belfort, M. A., Tooke-Miller, C., Allen JR., J. C., Saade, G. R., Dildy, G. A., Grunewald, C., Nisell, H., & Herd, J. A. (2001). Changes in flow velocity, resistance indices, and cerebral perfusion pressure in the maternal middle cerebral artery distribution during normal pregnancy. Acta Obstetricia et Gynecologica Scandinavica, 80(2), 104-112. DOI: 10.1034/j.1600-0412.2001.080002104.x
  5. Berlit, P. (2010). Review: Diagnosis and treatment of cerebral vasculitis. Therapeutic Advances in Neurological Disorders, 3(1), 29-42. DOI: 10.1177/1756285609347123
  6. Bolotina, V. M., Najibi, S., Palacino, J. J., Pagano, P. J., & Cohen, R. A. (1994). Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature, 368(6474), 850-853. DOI: 10.1038/368850a0
  7. Chandra, A., Stone, C. R., Li, W. A., Geng, X., & Ding, Y. (2017). The cerebral circulation and cerebrovascular disease II: Pathogenesis of cerebrovascular disease. Brain Circulation, 3(2), 57-65. DOI: 10.4103/bc.bc_11_17
  8. Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., Jr, Jones, D. W., Materson, B. J., Oparil, S., Wright, J. T., Jr, Roccella, E. J., Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute, & National High Blood Pressure Education Program Coordinating Committee (2003). Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension, 42(6), 1206-1252. DOI: 10.1161/01.HYP.0000107251.49515.c2
  9. Choi, Y.-J., Park, J.-H., & Kim, J.-Y., (2022). A study on the effect of EMS wrist guards for wrist tunnel syndrome in lure-fishing participants. Korean Society for Emotion and Sensibility, 25(1), 115-128. DOI: 10.14695/KJSOS.2022.25.1.115
  10. Franco, O. S., Paulitsch, F. S., Pereira, A. P. C., Teixeira, A. O., Martins, C. N., Silva, A. M. V., Plentz, R. D. M., Irigoyen, M. C., & Signori, L. U. (2014). Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity. Brazilian Journal of Medical and Biological Research, 47(5), 411-418. DOI: 10.1590/1414-431X20143767
  11. Heesch, C. M. (1999). Reflexes that control cardiovascular function. Advances in Physiology Education, 277(6), S234. DOI: 10.1152/advances.1999.277.6.S234
  12. Jeong, J.-W., Shin, G., Kim, D. S., Kim, G.-H., Cho, M.-C., Kang, S.-M., Pyun, W. B., Lee, H.-Y., Chung, W.-J., Ihm, S.-H., Kim, K. I., Cho, E. J., Sohn, I.-S., Park, S., Shin, J., Sung, K. C., Ryu, S. K., Sung, J., Kim, D. J., … Hypertension Epidemiology Research Working Group. (2018). Korea hypertension fact sheet 2018. Clinical Hypertension, 24(1), 13. DOI: 10.1186/s40885-018-0098-0
  13. Jin, H.-K., Hwang, T.-Y., & Cho, S.-H. (2017). Effect of electrical stimulation on blood flow velocity and vessel size. Open Medicine, 12(1), 5-11. DOI: 10.1515/med-2017-0002
  14. Johnson, M. (2007). Transcutaneous electrical nerve stimulation: Mechanisms, clinical application and evidence. Reviews in Pain, 1(1), 7-11. DOI: 10.1177/204946370700100103
  15. Kim, D.-Y., Park, J,-H., & Kim, J.-Y., (2021). Effects of EMS compression belts with different muscular patterns on lumbar stabilization. Korean Society for Emotion and Sensibility, 24(2), 81-92. DOI: 10.14695/KJSOS.2021.24.2.81
  16. Madaminjonovna, K. Z. (2024). Etiological factors causing hypertension disease and measures to control it. American Journal of Pediatric Medicine and Health Sciences (2993-2149), 2(1), Article 1.
  17. Markus, H. (2004). Cerebral perfusion and stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 75(3), 353-361. DOI: 10.1136/jnnp.2003.025825
  18. Nitz, J. C. (2003). Haemodynamic Response to TENS applied to the upper thoracic nerve roots in normal subjects. Hong Kong Physiotherapy Journal, 21(1), 58-61. DOI: 10.1016/S1013-7025(09)70041-7
  19. Oda, H., Fujibayashi, M., Matsumoto, N., & Nishiwaki, M. (2022). Acute effects of low-intensity electrical stimulation on segmental arterial stiffness. Frontiers in Physiology, 13. DOI: 10.3389/fphys.2022.828670
  20. Petrofsky, J., Hinds, C. M., Batt, J., Prowse, M., & Suh, H. J. (2007). The interrelationships between electrical stimulation, the environment surrounding the vascular endothelial cells of the skin, and the role of nitric oxide in mediating the blood flow response to electrical stimulation. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 13(9), CR391-397.
  21. Pulgar, V. M. (2015). Direct electric stimulation to increase cerebrovascular function. Frontiers in Systems Neuroscience, 9. DOI: 10.3389/fnsys.2015.00054
  22. Redekop, G. J. (2008). Extracranial carotid and vertebral artery dissection: A review. canadian journal of neurological sciences. Journal Canadien Des Sciences Neurologiques, 35(2), 146-152. DOI: 10.1017/S0317167100008556
  23. Sanderson, J. E., Tomlinson, B., Lau, M. S. W., So, K. W. H., Cheung, A. H. K., Critchley, J. A. J. H., & Woo, K. S. (1995). The effect of transcutaneous electrical nerve stimulation (TENS) on autonomic cardiovascular reflexes. Clinical Autonomic Research, 5(2), 81-84. DOI: 10.1007/BF01827467
  24. Terminology and Diagnostic Criteria Committee, J. S. of U. in M. (2009). Standard method for ultrasound evaluation of carotid artery lesions. Journal of Medical Ultrasonics, 36(4), 219-226. DOI: 10.1007/s10396-009-0238-y
  25. Thomas, G. D. (2011). Neural control of the circulation. Advances in Physiology Education, 35(1), 28-32. DOI: 10.1152/advan.00114.2010
  26. Vieira, P. J. C., Ribeiro, J. P., Cipriano, G., Umpierre, D., Cahalin, L. P., Moraes, R. S., & Chiappa, G. R. (2012). Effect of transcutaneous electrical nerve stimulation on muscle metaboreflex in healthy young and older subjects. European Journal of Applied Physiology, 112(4), 1327-1334. DOI: 10.1007/s00421-011-2084-z
  27. Yamashita, A., Asada, Y., Sugimura, H., Yamamoto, H., Marutsuka, K., Hatakeyama, K., Tamura, S., Ikeda, Y., & Sumiyoshi, A. (2003). Contribution of von Willebrand factor to thrombus formation on neointima of rabbit stenotic iliac artery under high blood-flow velocity. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(6), 1105-1110. DOI: 10.1161/01.ATV.0000077206.35631.B2
  28. Yi, K.-K., Park, C., Yang, J., Lee, Y.-B., & Kang, C.-K. (2023). Quantitative thermal stimulation using therapeutic ultrasound to improve cerebral blood flow and reduce vascular stiffness. Sensors, 23(20), Article 20. DOI: 10.3390/s23208487