• Title/Summary/Keyword: Blood plasma separation

Search Result 21, Processing Time 0.023 seconds

Fabrication and Simulation of Fluid Wing Structure for Microfluidic Blood Plasma Separation

  • Choe, Jeongun;Park, Jiyun;Lee, Jihye;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.196-202
    • /
    • 2015
  • Human blood consists of 55% of plasma and 45% of blood cells such as white blood cell (WBC) and red blood cell (RBC). In plasma, there are many kinds of promising biomarkers, which can be used for the diagnosis of various diseases and biological analysis. For diagnostic tools such as a lab-on-a-chip (LOC), blood plasma separation is a fundamental step for accomplishing a high performance in the detection of a disease. Highly efficient separators can increase the sensitivity and selectivity of biosensors and reduce diagnostic time. In order to achieve a higher yield in blood plasma separation, we propose a novel fluid wing structure that is optimized by COMSOL simulations by varying the fluidic channel width and the angle of the bifurcation. The fluid wing structure is inspired by the inertial particle separator system in helicopters where sand particles are prevented from following the air flow to an engine. The structure is ameliorated in order to satisfy biological and fluidic requirements at the micro scale to achieve high plasma yield and separation efficiency. In this study, we fabricated the fluid wing structure for the efficient microfluidic blood plasma separation. The high plasma yield of 67% is achieved with a channel width of $20{\mu}m$ in the fabricated fluidic chip and the result was not affected by the angle of the bifurcation.

Separation of Blood Cell and Blood Plasma Using Microstructure (미세구조물을 이용한 혈구/혈장 분리)

  • Kim, Duckiong;Seo, Jee-Hoon;Son, Sang Uk;Kim, Jae Yun;Yoon, Eui Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.743-747
    • /
    • 2004
  • In this study, micro blood separators capable of separating blood cell and blood plasma using microstructure are fabricated and their feasibility and separation performance are evaluated. Test results show the possibility of separating blood cell and blood plasma using microstructure. To improve separation performance and anti-clogging characteristic, technical points of tested micro blood separators are discussed and improved designs are presented.

  • PDF

Separation of monocytes from canine peripheral blood (개 말초혈액(末稍血液)에서 monocytes 분리(分離))

  • Kim, Jeoung-bae;Lee, Bang-whan
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.2
    • /
    • pp.33-39
    • /
    • 1989
  • Pure separation of various leukocytes is required for the assessment of their roles in immunological and phisiological function. In this study, pure separation of monocytes from canine peripheral blood was attempted. At first, mononuclear cells (PBMC) were separated by ficoll-hypaque gradient method and then monocytes were recovered from PBMC suspensions in sucrose gradient Sol. (PBMC-Sucrose), autologous plasma (PBMC-Plasma) and autologous serum (PBMC-Serum) incubated at $37^{\circ}C$ for 2 hours. 1. In the separation of PBMC by ficoll-hypaque gradient method in canine blood, higher relative centrifugal force (RCF) was required, as high as more than 1,300xg RCF for 40 minutes, for clear formation of PBMC layer than that in human blood as usually used 400xg RCF for 40 minutes. 2. In monocytes-separation from three PBMC suspensions following PBMC separation, recovery-, purity- and viability-rate of monocytes showed better results in PBMC-Plasma and PBMC-Serum than in PBMC-Sucrose suspension, particulary showing better results from PBMC suspensions performed by centrifugation at 1,500xg RCF for 40 minutes.

  • PDF

Construction of Membrane Sieves Using Stoichiometric and Stress-Reduced $Si_3N_4/SiO_2/Si_3N_4$ Multilayer Films and Their Applications in Blood Plasma Separation

  • Lee, Dae-Sik;Choi, Yo-Han;Han, Yong-Duk;Yoon, Hyun-C.;Shoji, Shuichi;Jung, Mun-Youn
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.226-234
    • /
    • 2012
  • The novelty of this study resides in the fabrication of stoichiometric and stress-reduced $Si_3N_4/SiO_2/Si_3N_4$ triple-layer membrane sieves. The membrane sieves were designed to be very flat and thin, mechanically stress-reduced, and stable in their electrical and chemical properties. All insulating materials are deposited stoichiometrically by a low-pressure chemical vapor deposition system. The membranes with a thickness of 0.4 ${\mu}m$ have pores with a diameter of about 1 ${\mu}m$. The device is fabricated on a 6" silicon wafer with the semiconductor processes. We utilized the membrane sieves for plasma separations from human whole blood. To enhance the separation ability of blood plasma, an agarose gel matrix was attached to the membrane sieves. We could separate about 1 ${\mu}L$ of blood plasma from 5 ${\mu}L$ of human whole blood. Our device can be used in the cell-based biosensors or analysis systems in analytical chemistry.

Comparison of the methods for platelet rich plasma preparation in horses

  • Lee, Eun-bee;Kim, Jung-Won;Seo, Jong-pil
    • Journal of Animal Science and Technology
    • /
    • v.60 no.8
    • /
    • pp.20.1-20.4
    • /
    • 2018
  • Platelet rich plasma (PRP) is popularly used in the horse industry to enhance regeneration of tissue injury that has limitation of blood supply. This study aimed to compare the methods for platelet rich plasma preparation since they has not been established yet. Blood was collected from six horses and platelets were concentrated by three different methods (2-step centrifugation, separated centrifugation and separated centrifugation using histopaque). Concentrated blood was analyzed using Advia hematology systems. In the result, separated centrifugation with histopaque showed the significantly lower number of red blood cells than other groups. The 2-step centrifugation showed the significantly higher number of white blood cells than other groups, while it contained the highest concentration of red blood cells among three groups. In the 2-step centrifugation, separated centrifugation and separated centrifugation with histopaque, platelets were concentrated 4.5, 5.3 and 5.6 times, respectively. And no significant difference of the platelet concentration between the three groups was found. This study demonstrated that separated centrifugation using histopaque was the best method for platelet rich plasma preparation because of the proper amount of platelets and the separation of red blood cells from platelet rich plasma.

Effect of Dextrose, NaCl and Temperature on the RBC Sedimentation Rates in Goat (산양적혈구(山羊赤血球) 침강속도(沈降速度)에 미치는 온도(溫度), NaCl 및 Dextrose에 대하여)

  • Yu, Chang Jun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.2
    • /
    • pp.109-114
    • /
    • 1984
  • Eight Korean native black goats were used, $10m{\ell}$ of blood was collected from the Jugular vein into heparinized tubes a week interval. The heparinized blood was centrifuged for separation to blood plasma and corpuscles. The hematocrit, per centage of blood that is red blood cells, was reschuffuled of 10 %, 20 %, 30 %, 40 % and 50 % using blood plasma, 0.9 % NaCl solution and 5.4 % dextrose solution. The sedimentation rates of red blood cell obtained at $7^{\circ}C{\pm}1^{\circ}C$ and $27^{\circ}C{\pm}1^{\circ}C$ are summarized as follows. 1) The sedimentation rates of red blood cell were more increased by lower PCV%, i.e. there was a reverse relationship between the sedimentation rates and PCV% at any condition of these experiments. 2) The RBC were sedimented the most quickly in the NaCl solution and slower in the plasma compare with the dextrose solution at the same PCV%. 3) There was no temperature effect on the sedimentation rates between the two groups of $7^{\circ}C{\pm}1^{\circ}C$ and $27^{\circ}C{\pm}1^{\circ}C$(at PCV 20% and 10%), even though the temperature difference is $20^{\circ}C$.

  • PDF

Quantitative Speciation of Selenium in Human Blood Serum and Urine with AE- RP- and AF-HPLC-ICP/MS

  • Jeong, Ji-Sun;Lee, Jonghae;Pak, Yong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3817-3824
    • /
    • 2013
  • Various separation modes in HPLC, such as anion exchange (AE), reversed-phase (RP), and affinity (AF) chromatography were examined for the separation of selenium species in human blood serum and urine. While RP- and AE-HPLC were mainly used for the separation of small molecular selenium species, double column AF-HPLC achieved the separation of selenoproteins in blood serum efficiently. Further, the effluent of AF-HPLC was enzymatically hydrolyzed and then analyzed with RP HPLC for selenoamino acid study. The versatility of the hybrid technique makes the in-depth study of selenium species possible. For quantification, post column isotope dilution (ID) with $^{78}Se$ spike was performed. ORC ICP/MS (octapole reaction cell inductively coupled plasma/mass spectrometry) was used with 4 mL $min^{-1}$ Hydrogen as reaction gas. In urine sample, inorganic selenium and SeCys were identified. In blood serum, selenoproteins GPx, SelP and SeAlb were detected and quantified. The concentration for GPx, SelP and SeAlb was $22.8{\pm}3.4\;ng\;g^{-1}$, $45.2{\pm}1.7\;ng\;g^{-1}$, and $16.1{\pm}2.2\;ng\;g^{-1}$, respectively when $^{80}Se/^{78}Se$ was used. The sum of these selenoproteins ($84.1{\pm}4.4\;ng\;g^{-1}$) agrees well with the total selenium concentration measured with the ID method of $87.0{\pm}3.0\;ng\;g^{-1}$. Enzymatic hydrolysis of each selenium proteins revealed that SeCys is the major amino acid for all three proteins and SeMet is contained in SeAlb only.

Micro Fluidic Component for a Blood Analysis System (혈액분석기용 유체소자의 설계기술 개발)

  • Kim, Jae Yun;Kim, Duckjong;Heo, Pil Woo;Park, Sang-Jin;Yoon, Eui Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.754-760
    • /
    • 2004
  • The miniaturization and integration are trend of modern blood analyses. Micro-Bio-Fluidics plays an important role in a micro blood analysis system. In this paper, analysis and design technology for blood analysis system is presented. Numerical simulations of a blood flow in micro separator and reservoir are conducted. As a result, we suggest on-chip micro separator, which performed plasma separation from whole blood in micro channels.

  • PDF

Design of Fluorescence Multi-cancer Diagnostic Sensor Platform based on Microfluidics (미세 유체 기반의 형광 다중 암 진단 센서 플랫폼 설계)

  • Lee, B.K.;Khaliq, A.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.55-61
    • /
    • 2022
  • There is a major interest in diagnostic technology for multiple cancers worldwide. In order to reduce the difficulty of cancer diagnosis, a liquid biopsy technology based on a microfluidic device using trace amounts of biofluids such as blood is being studied. And optical biosensing, which measures the concentration of analytes through fluorescence imaging using biofluids, requires various strategies to improve sensitivity, and specialists and equipment are needed to carry out these strategies. This leads to an increase in diagnostic and production costs, and it is necessary to develop a technology to solve this problem. In this paper, we design and propose a fluorescent multi-cancer diagnostic sensing platform structure that implements passive self-separation technology and molecular recognition activation functions by fluid mixing, only with the geometry and microfluidic phenomena of microchannels based on self-driven flow by capillary force. In order to check the parameters affecting the performance of the plasma separation part of the designed sensor, the hydrodynamic diameter of the channel and the viscosity of the fluid were set as variables to confirm the formation of plasma separation flow through simulation. And finally, we propose an optimal sensor platform structure.

Effects of pH, Temperature, and Protein Content on Water Binding Capacity of Hog Plasma Protein (pH, 온도, 단백질함량에 따른 돼지혈장 단백질의 보수력 변화)

  • Kim, J.B.;Yi, Y.H.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.2
    • /
    • pp.195-198
    • /
    • 1989
  • The water binding capacity (WBC) of hoe plasma protein was investigated. The centrifugal condition for optimal separation of plasma from hog blood was fixed at 1400 g-force. The WBC of 5%-plasma-protein-solution eel increased rapidly between pH 6 and 7 but gradually after pH 7 at $85^{\circ}C$ for 30 min. The higher heating temperature demonstrated the higher WBC of 5%-plasma-protein-solution gel at pH 7 within short period of time. The WBC of 5%-plasma-protein-solution gel increased rapidly at the beginning of heating. The WBC per gram of plasma protein at pH 7 and $85^{\circ}C$ for 30 min decreased as protein concentration of the plasma solution increased.

  • PDF