• Title/Summary/Keyword: Blood capillary

Search Result 207, Processing Time 0.027 seconds

The Analysis of Blood Glucose Level Difference According to the Exact Use of Blood Glucose Measurement Test Strips in $^{18}F$-FDG Wholebody PET ($^{18}F$-FDG를 이용한 전신 PET 검사에서 혈당 측정 검사지의 정확한 사용에 따른 혈당 수치의 차이 분석)

  • Park, Soon-Ki;Lee, Nam-Ki;NamGung, Chang-Kyung;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.100-103
    • /
    • 2010
  • Purpose: $^{18}F$-FDG wholebody PET is to evaluate the tumor using glucose metabolism. The blood glucose level is important factor that affects on a result of examination. High glucose levels may interfere with tumor targeting due to competitive inhibition of FDG uptake by D-glucose. The blood glucose level measurement test strips used in the blood glucose measurement are classified into the capillary blood measurement test strips and general purpose measurement test strips that can measure the venous blood and capillary blood altogether depends on cases. The purpose of the study was to compare the blood glucose measurements between simultaneously obtained capillary and venous blood samples using the capillary blood measurement test strips, general purpose measurement test strips. Materials and Methods: A total of 46 subjects (32 males, 14 females) with a mean age of $57.3{\pm}12.3$ years were enrolled. The blood glucose estimation was performed with a Optium Xceed Glucometer (Abbott). Simultaneous capillary and venous blood samples were obtained from each subject. The blood glucose levels were measured using the capillary blood measurement test strips and general purpose measurement test strips. The capillary and venous measurements were compared using a pared t-test. Results: The mean capillary and venous glucose values using the general purpose measurement test strips were $95.2{\pm}12.4$ mg/dL and $104.1{\pm}14.4$ mg/dL, giving a statistically significant difference (p<0.001) between the mean values for the capillary and venous glucose samples (9.0 mg/dL; 95% confidence interval (CI) -11.2 to -6.7). The mean capillary and venous glucose values using the capillary blood measurement test strips were $91.5{\pm}13.6$ mg/dL and $108.6{\pm}16.2$ mg/dL, giving a statistically significant difference (p<0.001) between the mean values for the capillary and venous glucose samples (16.6 mg/dL; 95% CI -20.2 to -13.0). Conclusion: When measuring the blood glucose level before $^{18}F$-FDG PET examination, since the incorrect blood glucose level can be measured, it should note to measure the blood glucose level of the venous blood by the capillary blood measurement test strips. Therefore the measurement variation can be reduced to fulfill the standardized measurement procedure with the suitable measurement test strips, the preparation of the PET examination will be able to be clearly confirmed. In addition, the standardized procedure of the following measurement on the area which is same at all times the blood area in the blood glucose measurement among a capillary or a vein will be needed.

  • PDF

Availability of Capillary Blood Gas Analysis in Neonate (신생아에서 모세혈 가스분석 검사의 유용성)

  • Jeong, Jong Tae;Yun, Su Young;Lee, Ran;Hyun, Jae Ho;Jung, Gyu Young
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.4
    • /
    • pp.449-453
    • /
    • 2002
  • Purpose : Arterial blood gas analysis is frequently performed in neonatal intensive care unit (NICU) to evaluate ventilation and the metabolic state of critically ill infants. In occasions when umbilical arterial catheterization is not available, frequent arterial puncture is mandatory. This requires some technical skill and may occasionally have side effects. So we studied the validity of capillary blood gas analysis which can be performed conveniently compared with arterial blood. Methods : Twenty-four neonates admitted to NICU during April to Aug. 2001 were studied. They were more than two weeks old without indwelling arterial catheters. Thirty-six times, simultaneous arterial, and capillary blood gases were drawn by puncture and the pH, $pCO_2$ and $pO_2$ of each sample was measured. Blood pressure and body temperature was checked before sampling to rule out impaired peripheral circulation. Capillary blood was collected from warmed heels. Results : There was a strong correlation between capillary and arterial pH(r=0.91, P<0.05). The absolute value of the difference between arterial and capillary pH was less than 0.05. Also capillary $pCO_2$ showed correlation with arterial $pCO_2$(r=0.77, P<0.05). Despite a statistically significant correlation between capillary and arterial $pO_2$(r=0.68, P<0.05), the absolute value of the difference was more than 10 mmHg in 92% of cases. Conclusion : Capillary blood gases accurately reflected arterial pH and $pCO_2$ and showed a relative correlation with $pO_2$. Capillary blood gas analysis can be a useful alternative to arterial blood when continuation of the umbilical arterial catheter is no longer available.

Blood Viscosity Measurements Using a Pressure-Scanning Capillary Viscometer

  • Sehyun Shin;Keum, Do-Young;Ku, Yun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1719-1724
    • /
    • 2002
  • A previously designed capillary viscometer with measuring differential pressure was modified to measure the viscosity of non-Newtonian fluids including unadulterated blood continuously over numerous shear rates in a single measurement. Because of unavoidable experimental noise and a limited number of data, the previous capillary viscometer experienced an inaccuracy and could not directly determine a viscosity without an iterative calculation. However, in the present measurement there are numerous data available near the point of interest so that the numeric value of the derivative, d(In Q)/d(In Q$\sub$w/), is no longer sensitive to the method of differentiation. In addition, relatively low and wide shear rate viscosity measurements were possible because of the present precision pressure-scanning method with respect to time. For aqueous polymer solutions, excellent agreement was found between the results from the pressure-scanning capillary viscometer and those from a commercially available rotating viscometer. In addition, the pressure-scanning capillary viscometer measured the viscosity of unadulterated whole blood without adding any anticoagulants.

Comparison of C-reactive Protein between Capillary and Venous Blood in Children (소아에 있어서 C-반응성 단백의 모세혈 및 정맥혈 검사의 비교평가)

  • Jin, Ji Hoon;Jung, Soo Ho;Hong, Young Jin;Son, Byong Kwan;Kim, Soon Ki
    • Pediatric Infection and Vaccine
    • /
    • v.17 no.2
    • /
    • pp.101-107
    • /
    • 2010
  • Purpose : In evaluation of patients, laboratory results are crucial in determination of a treatment plan. Obtaining venous blood from infants and children is a difficult procedure. Substitution of a capillary blood sample for a venous blood sample has been suggested. However, there are few studies showing mutual correlation between C-reactive protein (CRP) results in capillary and venous blood. This study was designed to determine whether the result of the capillary sample is the same as the result of the venous blood sample. Methods : After informed consent, a pair of venous and fingertip capillary blood samples were simultaneously collected from 100 children. The LC-178CRPTM was used for analysis of capillary blood and the Hitachi 7180 automatic hematology analyzer was used for analysis of venous blood. We compared CRP of both venous and capillary blood samples. Results were analyzed by crosstabulation analysis, simple regression analysis and the Bland Altman Plot method. Results : A close correlation (90.63%) was observed between capillary and venous blood analyzed by crosstabulation analysis. CRP results were similar between the two groups and showed a high coefficient correlation ($\beta$=1.3434, $R^2$=0.9888, P<0.0001) when analyzed by a simple regression model. The average value in venous blood was also higher compared to capillary blood. According to Bland Altman Plot analysis, lab results were measured at a 95% confidence interval. Conclusion : CRP results from capillary blood showed close correlation with venous blood sampling. At present, venous blood sampling is the preferred method. However, due to difficulty in venous blood sampling, capillary sampling could be considered as an alternative technique for use with children.

Measurements of Blood Viscosity Using a Pressure-Scanning Slit Viscometer

  • Sehyun Shin;Lee, Sung-Woo;Ku, Yun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1036-1041
    • /
    • 2004
  • A newly designed pressure-scanning slit viscometer is developed to combine an optical device without refraction while measuring blood viscosity over a range of shear rates. The capillary tube in a previously designed capillary viscometer was replaced with a transparent slit, which is affordable to mount optical measurement of flowing blood cells. Using a pressure transducer, we measured the change of pressure in a collecting chamber with respect to the time, p(t), from which the viscosity and shear rate were mathematically calculated. For water, standard oil and whole blood, excellent agreement was found between the results from the pressure-scanning slit viscometer and those from a commercially available rotating viscometer. This new viscometer overcomes the drawbacks of the previously designed capillary viscometer in the measuring whole blood viscosity. First, the pressure-scanning slit viscometer can combine an optical instrument such as a microscope. Second, this design is low cost and simple (i.e., ease of operation, no moving parts, and disposable).

View on The Relation between the Heart and perspiration (심주한(心主汗)에 대한 소고(小考))

  • Jeong, Heon Young;Lee, Jeong Ran;Park, Keum Sook
    • Journal of Korean Medical classics
    • /
    • v.28 no.1
    • /
    • pp.143-150
    • /
    • 2015
  • Objectives : This study aim to find out the reason why perspiration related with the Heart in Korean Medicine. Results : Perspiration is closely connected with the Heart because sweat is a kind of ultrafiltrate of the blood and the Heart conducts blood. In order to perspire, it is necessary to increase blood flow to capillary surrounding sweat glands. The Heart plays an important role in increasing blood flow to capillary surrounding sweat glands. Perspiration controls the body temperature. It must be increase the blood flow to skin in order that down the high body temperature. The Heart plays an important role in increasing blood flow. Conclusions : Perspiration is closely connected with the Heart because sweat is a kind of ultrafiltrate of the blood and there are plenty capillary surround sweat gland. The Heart controls the blood flow to skin in order to regulate of body temperature.

Angled Tube Method for Determining Erythrocyte Sedimentation Rate of Cattle (경사관법(傾斜管法)에 의한 우혈액(牛血液)의 적혈구침강율(赤血球沈降率) 측정(測定))

  • Lee, Bang-whan;Shin, Jong-uk
    • Korean Journal of Veterinary Research
    • /
    • v.26 no.1
    • /
    • pp.175-185
    • /
    • 1986
  • The measurement of angled erythrocyte sedimentation rate (ESR), as a replacement for perpendicular ESR, for cattle blood was scrutinized since it has been well known that perpendicular ESR in cattle is too slow to be adopted as an effective clinical test. Samples of blood were taken from 186 Korean native cattle over 2 years old. The results obtained in the experiment were summarized as follows. 1. Average values of perpendicular ESR/24hrs in 15 apparently healthy cattle, as measured by Wintrobe, Westergren and capillary tubes, were $5.8{\pm}2.2$, $11.1{\pm}3.7$ and $10.4{\pm}4.5%$ respectively, which were found to be similar to the values of perpendicular ESR/hr of normal blood of human. 2. The ESR was determined in the tubes held at 90, 75, 60, 45, 30 and 15-degree angles, using 3 types of tubes. For the diagnostic purposes, the best results were obtained from the tubes held at 45-degree angle. 3. The angled ESR values increased as the diameters of the tube-bores decreased. 4. The tube length did not affect the angled ESR(%). 5. The angled ESR values increased with the increased environmental temperature during the ESR measurement. 6. The storage temperature at $5^{\circ}C$, $20^{\circ}C$ and $35^{\circ}C$, of the blood for 24 hours did not affect the angled ESR. 7. Samples of blood were treated with 4 kinds of anticoagulants (heparin, $K_2$-EDTA, double oxalate and sodium citrate) and the ESR was determined at 45-degree angle, using capillary hematocrit tubes. The ESR values were higher in the blood samples treated with sodium citrate than in those treated with other anticoagulants. 8. By using the autologous plasma, the PCV was adjusted to be 5, 10, 20, 30, 40 and 50ml/100ml and the ESR was determined in the capillary hematocrit and Wintrobe tubes held at 45 degrees. In both of the methods the ESRs increased as the values of PCV decreased. The regressions of ESR to PCV in both 45-degree-angled capillary and Wintrobe tubes were curvilinear. For the capillary hematocrit tubes the second degree polynomial $Y=61.9779-2.3533x+0.0228x^2$ (r=0.9999) fits the data. And in the case of Wintrobe tubes the second degree polynomial $Y=27.9767-1.1314x-0.0117x^2$ (r=0.9998) fits the data. 9. The 45-degree angled ESR was determined in the blood of 71 healthy Korean native cows using capillary hematocrit tubes. The average PCV was $35.4{\pm}3.6ml/100ml$. The observed ESR/hr averaged $7.2{\pm}2.7%$, while the corrected ESR/hr to a PCV of 36ml/100ml averaged $6.6{\pm}1.3%$. From these results it was concluded that to obtain the best results the ESR/hr of Korean native cattle should be determined at 45-degree angle at room temperature($20^{\circ}C$) using capillary hematocrit tubes.

  • PDF

Effects of endurance exercise under hypoxia on acid-base and ion balance in healthy males

  • Nam, Sang-Seok;Park, Hun-Young
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.3
    • /
    • pp.7-12
    • /
    • 2020
  • [Purpose] This study was performed to investigate the acid-base and ion balance at rest and after exercise in healthy males under normoxia, moderate hypoxia, and severe hypoxia. [Methods] Ten healthy Korean males completed three different trials on different days, comprising exercise under normoxia (FiO2 = 20.9%, N trial), moderate hypoxia (FiO2 = 16.5%, MH trial), and severe hypoxia (FiO2 = 12.8%, SH trial). They undertook endurance exercise for 30 min on a cycle ergometer at the same relative exercise intensity equivalent to 80% maximal heart rate under all conditions. Capillary blood samples were obtained to determine acid-base and ion balance at rest and after exercise. [Results] Exercise-induced blood lactate elevations were significantly increased as hypoxic conditions became more severe; SH > MH > N trials (P = 0.003). After exercise, blood glucose levels were significantly higher in the SH trial than in the N and MH trials (P = 0.001). Capillary oxygen saturation (SCO2) levels were significantly lowered as hypoxic conditions became more severe; SH > MH > N trials (P < 0.001). The pH levels were significantly lower in the MH trial than that in the N trial (P = 0.010). Moreover, HCO3- levels were significantly lower in the SH trial than in the N trial, with significant interaction (P = 0.003). There were no significant differences in blood Na+, K+, and Ca2+ levels between the trials. [Conclusion] MH and SH trials induced greater differences in glucose, lactate, SCO2, pH, and HCO3- levels in capillary blood compared to the N trial. Additionally, lactate, SCO2, and HCO3- levels showed greater changes in the SH trial than in the MH trial. However, there were no significant differences in Na+, K+, and Ca2+ levels in MH and SH trials compared to the N trial.

Identification of venular capillary remodelling: a possible link to the development of periodontitis?

  • Townsend, David
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.1
    • /
    • pp.65-76
    • /
    • 2022
  • Purpose: The present study measured changes in arteriolar and venular capillary flow and structure in the gingival tissues during the development of plaque-induced gingival inflammation by combining dynamic optical coherence tomography (OCT), laser perfusion, and capillaroscopic video imaging. Methods: Gingival inflammation was induced in 21 healthy volunteers over a 3-week period. Gingival blood flow and capillary morphology were measured by dynamic OCT, laser perfusion imaging, and capillaroscopy, including a baseline assessment of capillary glycocalyx thickness. Venular capillary flow was estimated by analysis of the perfusion images and mean blood velocity/acceleration in the capillaroscopic images. Readings were recorded at baseline and weekly over the 3 weeks of plaque accumulation and 2 weeks after brushing was resumed. Results: Perfusion imaging demonstrated a significant reduction of gingival blood flow after 1 and 2 weeks of plaque accumulation (P<0.05), but by 3 weeks of plaque accumulation there was a more mixed picture, with reduced flow in some participants and increased flow in others. Participants with reduced flux at 3 weeks also demonstrated venular-type flow as determined by perfusion images and evidence of the development of venular capillaries as assessed by the velocity/acceleration ratio in capillaroscopic images. After brushing resumed, these venular capillaries were broken down and replaced by arteriolar capillaries. Conclusions: After 3 weeks of plaque accumulation, there was wide variation in microvascular reactions between the participants. Reduced capillary flow was associated with the development of venular capillaries in some individuals. This is noteworthy, as an early increase in venous capillaries is a key vascular feature of cardiovascular disease, psoriasis, Sjögren syndrome, and rheumatoid arthritis-diseases with a significant association with the development of severe gingival inflammation, which leads to periodontitis. Future investigations of microvascular changes in gingival inflammation might benefit from accurate capillary flow velocity measurements to assess the development of venular capillaries.

The Effect of Transverse Vibration on Red Blood Cell Aggregation and Blood Viscosity

  • Shin, Se-Hyun;Ku, Yun-Hee;Park, Myung-Su;Suh, Jang-Soo
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.2
    • /
    • pp.4-12
    • /
    • 2003
  • The present study investigated the effect of transverse vibration on the hemorheological characteristics of blood using a newly designed pressure-scanning capillary viscometer. As vibration was applied, aggregated blood cells (rouleaux) were disaggregated. The range of vibration frequency and amplitude are $0{\sim}100\;Hz$ and $0{\sim}0.8\;mm$, respectively for a capillary diameter 0.84 mm. As vibration increased, blood viscosity initially increased and tended to decrease. In order to delineate the unexpected results, the present study proposed two counteracting mechanisms of vibration related with red blood cell (RBC) aggregation affecting hemo-rheological properties. One is the reduction of RBC aggregation due to vibration causing an increase of blood viscosity. The other is forced cell migration due to the transverse vibration, which in turn forms a cell-free layer near the tube wall and causes a decrease of flow resistance.

  • PDF