• Title/Summary/Keyword: Block wall.

Search Result 330, Processing Time 0.024 seconds

Experimental Study On Seismic Behavior Of Masonry Walls With Column (기둥 및 벽체가 보강된 조적벽체의 지진거동에 대한 실험적 연구)

  • Kikuchi, Kenji;Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.93-105
    • /
    • 2006
  • In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns in improving the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. A total of twelve one-half scale specimens are tested under repeated lateral loads. Specimens are tested to failure with increasing maximum lateral drifts while a vertical axial load was applied and maintained constant. The specimens adopted are two-dimensional (2D) hollow concrete block masonry walls with different parameters such as shear span ratio, inflection point and percent of reinforcement in confining columns and walls. Test results obtained for each specimen include cracking patterns, load-deflection curve, and strains in reinforcement and walls in critical locations. Analysis of test data showed that above parameters generate a considerable effect on the seismic performance of confined concrete block masonry walls.

  • PDF

Analysis on Geo-stress and casing damage based on fluid-solid coupling for Q9G3 block in Jibei oil field

  • Ji, Youjun;Li, Xiaoyu
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.677-686
    • /
    • 2018
  • Aimed at serious casing damage problem during the process of oilfield development by injecting water, based on seepage mechanics, fluid mechanics and the theory of rock mechanics, the multi-physics coupling theory was also taken into account, the mathematical model for production of petroleum with water flooding was established, and the method to solve the coupling model was presented by combination of Abaqus and Eclipse software. The Q9G3 block in Jibei oilfield was taken for instance, the well log data and geological survey data were employed to build the numerical model of Q9G3 block, the method established above was applied to simulate the evolution of seepage and stress. The production data was imported into the model to conduct the history match work of the model, and the fitting accuracy of the model was quite good. The main mechanism of casing damage of the block was analyzed, and some wells with probable casing damage problem were pointed out, the displacement of the well wall matched very well with testing data of the filed. Finally, according to the simulation results, some useful measures for preventing casing damage in Jibei oilfield was proposed.

An Expremental Study on Connections Friction Test of Improvement for Coastal Environment Block (Coastal Environments 블록의 개발을 위한 연결부 마찰 실험)

  • Kim, Chun-Ho;Kim, Sang-Hoonq
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.49-52
    • /
    • 2008
  • The plain and simple shape water front structure were designed and installed for wave protection and wave resistance. But the installation of these plain and simple structure cause deficiency of environmental affinity. Also the resonance phenomena from the reflective wave and shipwave of the harbor incident wave caused high tide and wave, consequently maintaining the tranquility of inside harbor, give difficulty for mooring the ship and loading-unloading, increase the possibility of ship collision at the quray wall and landing place To solve these problems, we develop the environmentally friendly wave dissipation block. And installation efficiency, stability of the blocks through experiment of C.E Block Joint.

  • PDF

Reduction Effect on Surface Temperature of Reinforced Soil Wall with Vegetated Facing (전면 식생형 보강토 옹벽의 표면온도 저감 효과)

  • Jung, Sunggyu;Lee, Kwangwu;Cho, Samdeok;Kim, Juhyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.53-60
    • /
    • 2013
  • A new type of reinforced earth wall(REW) system is developed with vegetated facing which provides proper environment for long-term vegetation and also applicable to high retaining wall system. Vegetated retaining wall is a green alternative for retaining walls and an effective way to reduce heat island effect than conventional block or concrete systems. Several construction sites using vegetated facing is observed to monitor adaptation state of vegetation and estimate surface temperature of wall facing over two years. It was observed that a number of plants including Siberian chrysanthemum adapt well to the inside of the facing blocks because vegetation bag helps to keep a proper condition for vegetation. According to the results using thermographic camera, average surface temperature of vegetated facing is higher for all ranges of coverage ratio of vegetation. The increment of average surface temperature of vegetated facing is larger than that of non-vegetated facing when the air temperature rises, and vice versa.

Investigation on Behavior of Reinforced Segmental Retaining Walls (블럭식 보강토 옹벽의 거동 특성 연구)

  • 유충식;이광문
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.53-62
    • /
    • 1999
  • Despite the frequent use of the soil-reinforced segmental retaining wall (SRW) system, the roles of the different components comprising the system, such as facing blocks, reinforcements, backfill, and block/backfill interface, are still not fully understood, and much still need to be investigated for more safe and economical design/analysis method. Therefore, this study was undertaken with the aim of understanding the effect of the shear strength of backfill material and the reinforcement stiffness on the behavior of SRW by using the finite element analysis. In the analysis the details of construction sequence and the SRW components were carefully modeled, and a parametric study was performed in order to investigate the effects of shear strength of backfill soil and reinforcement stiffness on the wall displacement and earth pressure, the vertical stress under the reinforced block, the reinforcement and block/reinforcement connection forces. Implications of the findings from this study to current design practices were discussed in detail.

  • PDF

Visual Preference of the Methods for River Embankment - The Case of Dongchon in Gwangyang - (하천호안공법의 시각적 선호도 - 광양시 동천을 사례로 -)

  • Lee Sang-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.3 s.116
    • /
    • pp.12-22
    • /
    • 2006
  • The purpose of this study is to evaluate visual preferences of the methods for river embankment based on seasonal changes and to reveal the relationship between visual preference and effective factors, which are the physical and esthetic elements inside the river. For this research seven river embankment methods including concrete block, concrete wall, gabion, and vegetated concrete block were selected in Dongchon of Gwangyang. Twenty-eight pictures by the four pictures of each embankment method based on seasonal changes, the winter and summer of the first and second years after construction were used for a photo-questionnaire by 49 participants. In the analysis of the relationship between visual preference and effective factors, the independent variables included eight factors: form of the material, harmony with the surroundings, the cleanness of river floor, the green area of embankment methods, the water area in river floor, the stone and sand area in river floor, the planting area in river floor, and the area of embankment itself. The result of this study are as follows. First, visual preference in summer was higher than in winter, and the summer landscape of the second you scored the highest value for visual preference. Second, similarly to the way the vegetated concrete block produced a green effect, cobblestone and gabion embankments made of natural materials scored higher than others, whereas the concrete retaining wall scored the lowest of all methods because of it's artificiality. Third, the seven independent variables, except form of the material, are proved statistically significant at the 5% level. The water area in river floor, harmony with the surroundings, the planting area in river floor, and the cleanness of the river floor were revealed as more effective factors influencing visual preference. The research results suggest that the riverscape has to be controlled in terms of seasonal change and embankment methods. Natural materials and green effects in embankment methods are more important for increasing landscape preference, and the landscape factors inside a river should also be considered important variables. It is recommended that advanced study on other factors affecting visual preference of the riverscape be carried out to support this research.

Behavior of Geosynthetic Reinforced Modular Block Walls with Settlement of Foundation (기초지반의 침하가 계단식 보강토 옹벽의 거동에 미치는 영향)

  • Yoo, Chung-Sik;Jung, Hye-Young;Song, Ah-Ran
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.4
    • /
    • pp.13-21
    • /
    • 2005
  • This paper presents the results of an investigation on the effects of settlement of foundation on the behavior of geosynthetic-reinforced modular block walls in a tiered arrangement using the finite-element method of numerical analysis. A parametric study was performed by varing the foundation condition and offset distance between the tiers and reinforcement length of the lower and upper tier using varified finite-element model. The finite-element analysis provided relevant information on the mechanical behavior of the wall and interaction mechanism between the upper and lowers that was otherwise difficult to obtain from the limit-equilibrium analysis based current design approaches. Practical implications of the findings obtained from this study to current design approaches are discussed in great detail.

  • PDF

Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins

  • Lim, Hyoun-Sub;Lee, Mi Yeon;Moon, Jae Sun;Moon, Jung-Kyung;Yu, Yong-Man;Cho, In Sook;Bae, Hanhong;DeBoer, Matt;Ju, Hojong;Hammond, John;Jackson, Andrew O.
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.17-30
    • /
    • 2013
  • Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB) treat-ments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW). BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3.

Numerical Investigation on the Behavior of Geosynthetic Reinforced Modular Block Wells in a Tiered Arrangement (계단식 보강토 옹벽의 거동에 관한 수치 해석적 연구)

  • Yoo Chung-Sik;Jung Hye-Young;Song Ah-Ran
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.49-60
    • /
    • 2005
  • This paper presents the results of an investigation on the effects of design variables on the behavior of geosynthetic-reinforced modular block walls in a tiered arrangement using the finite-element method of numerical analysis. A parametric study was performed by varying the offset distance between the tiers and reinforcement length of the lower and upper tier using verified finite-element model. The finite-element analysis provided relevant information on the mechanical behavior of the tier wall and interaction mechanism between the upper and lower tier, which was otherwise difficult to obtain from the limit-equilibrium analysis based current design approaches. Practical implications of the findings obtained from this study in the current design approaches are discussed in great detail.

A Study on Film Boiling Heat Transfer in a Forced Convective Flow System (강제대류계(强制對流系)에 있어서 막비등열전달(膜沸騰熱傳達)에 관한 연구(硏究))

  • Kim, Y.T.;Kwon, S.S.;Jung, D.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.51-60
    • /
    • 1991
  • The aim of this study is to investigate the heat transfer characteristics in the transient cooling process of a high temperature wall. The slow transient cooling experiment was carried out with a copper block of high thermal capacity. The results of these experiments are as follows. 1. Temperature histories measured by the thermocouple, which is 0.99, 2.00, 2.99mm from the heat transfer surface showed monotonous during the cooling process. These variation are the curves of typical temperature histories in film-boiling, transition-boiling, and nucleate-boiling regions. 2. The temperature histories were measured by thermocouple installed in the copper block. The variations of the surface heat fluxes and surface temperature were computed from the numerical solution method TDMA from the measured temperature histories for radial position one dimensional heat transfer inverse problem. The boiling curves were found by the computed temperature histories. 3. The rewetting point which starts to change from film boiling to nucleate boiling is not connected with the mass velocity and it were found that the temperature of rewetting point indicated about $100^{\circ}C$. 4. The heat flux of rewetting point was about $10^5Kcal/m^2h$, at that time, the heat transfer coeficient indicated about $1000Kcal/m^2h^{\circ}C$ irrelevent to mass velocity. 5. The wall superheat decreases as the pressure increases. But I found that rewetting point appeared under higher condition in the wall temperature.

  • PDF