• Title/Summary/Keyword: Block planning

Search Result 272, Processing Time 0.034 seconds

Integrated Process Planning and Scheduling for Machining Operation in Shipbuilding (선각 내업 가공작업의 공정계획과 일정계획의 통합화 방안 연구)

  • Cho, Kyu-Kab;Oh, Jung-Soo;Kim, Young-Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.75-84
    • /
    • 1997
  • This paper describes the development of an integrating method for process planning and scheduling activities for block assembly in shipbuilding. A block is composed of several steel plates and steel sections with the predetermined shapes according to the ship design. The parts which constitute the block are manufac- tured by cutting and/or bending operations, which are termed as machining operation in this paper. The machining operation is the first process for block assembly which influences the remaining block assembly processes. Thus process planning and scheduling for machining operation to manufacture parts for block are very important to meet the assembly schedule in the shipyard. An integrating method for process plan- ning and scheduling is developed by introducing the concept of distributed process planning and scheduling composed of initial planning, alternative planning and final planning stages. In initial planning stage, nesting parts information and machining emthods are generated for each steel plate. In alternative plan- ning stage, machine groups are selected and workcenter dispatching information is generated. In final planning stage, cutting sequences are determined. The integrated system is tested by case study. The result shows that the integrated system is more efficient than existing manual planning system.

  • PDF

Automation of block assignment planning using a diagram-based scenario modeling method

  • Hwang, In Hyuck;Kim, Youngmin;Lee, Dong Kun;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.162-174
    • /
    • 2014
  • Most shipbuilding scheduling research so far has focused on the load level on the dock plan. This is because the dock is the least extendable resource in shipyards, and its overloading is difficult to resolve. However, once dock scheduling is completed, making a plan that makes the best use of the rest of the resources in the shipyard to minimize any additional cost is also important. Block assignment planning is one of the midterm planning tasks; it assigns a block to the facility (factory/shop or surface plate) that will actually manufacture the block according to the block characteristics and current situation of the facility. It is one of the most heavily loaded midterm planning tasks and is carried out manually by experienced workers. In this study, a method of representing the block assignment rules using a diagram was suggested through analysis of the existing manual process. A block allocation program was developed which automated the block assignment process according to the rules represented by the diagram. The planning scenario was validated through a case study that compared the manual assignment and two automated block assignment results.

Development of Integrated Assembly Process Planning and Scheduling System in Shipbuilding (조선에서의 조립공정계획과 일정계획의 지능형 통합시스템 개발)

  • Cho, Kyu-Kab;Ryu, Kwang-Ryel;Choi, Hyung-Rim;Oh, Jung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.22-35
    • /
    • 1999
  • The block assembly process takes more than half of the total shipbuilding processes. Therefore, it is very important to have a practically useful block assembly process planning system which can build plans of maximum efficiency with minimum man-hours required. However, the process plans are often not readily executable in the assembly shops due to severe imbalance of workloads. This problem arises because the process planning is done on block by block basis in current practice without paying any attention to the load distribution among the assembly shops. this paper presents the development of an automated hull block assembly process planning system which results in the most effective use of production resources and also produces plans that enable efficient time management. If the load balance of assembly shops is to be considered at the time of process planning, the task becomes complicated because of the increased computational complexity. To solve this problem, a new approach is adopted in this research in which the load balancing function and process planning function are iterated alternately providing to each other contexts for subsequent improvement. The result of case study with the data supplied from the shipyard shows that the system developed in this research is very effective and useful.

  • PDF

A Heuristic Algorithm for Block Storage Planning in Shipbuilding (조선 산업의 블록 적치장 운영계획 휴리스틱 알고리즘)

  • Son, Jung-Ryoul;Suh, Heung-Won;Ha, Byung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.239-245
    • /
    • 2014
  • This paper deal with the block storage planning problem of storing and retrieving assembly blocks in a temporary storage yard with limited capacity, which is one of the critical managerial problems in shipbuilding. The block storage planning problem is required to minimize the number of relocations of blocks while the constraints for storage and retrieval time windows are satisfied. We first show NP-hardness of the block storage planning problem. Next we propose a heuristic algorithm to generate good quality solutions for larger instances in very short computational time. The proposed heuristic algorithm was validated by comparing the results with the mathematical model presented in the previous study.

Generation of Block Assembly Sequence by Case Based Reasoning (사례기반 추론을 이용한 블록조립계획)

  • 신동목;김태운;서윤호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.163-170
    • /
    • 2004
  • In order to automatically determine the sequences of block assembly operations in shipbuilding, a process planning system using case-based reasoning (CBR) is developed. A block-assembly planning problem is modeled as a constraint satisfaction problem where the precedence relations between operations are considered constraints. The process planning system generates an assembly sequence by adapting information such as solutions and constraints collected from similar cases retrieved from the case base. In order to find similar cases, the process planning system first matches the parts of the problem and the parts of each case based on their roles in the assembly, and then it matches the relations related to the parts-pairs. The part involved in more operations are considered more important. The process planning system is applied to simple examples fur verification and comparison.

Deployment Planning of Blocks from Storage Yards Using a Tabu Search Algorithm (타부서치 알고리즘을 이용한 적치장의 블록 반출계획)

  • Lee, Sang-Hyup;Kim, Ji-On;Moon, Il-Kyeong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.3
    • /
    • pp.198-208
    • /
    • 2011
  • At a shipyard, the efficient handling of blocks is one of the most important factors in the shipbuilding process. We consider the problem of deployment planning of blocks from storage yards. As some information of block arrangement should be considered to handle the problem, we adopt the block arrangement based on the coordinates and sizes of each block at a storage yard. Deployment planning for a block involves deciding upon its transportation route from the storage yard and searching for blocks that would obstruct its transportation along this route. A tabu search algorithm for deploying several blocks is developed to minimize the number of obstructive blocks deployed together from the storage yards at a shipyard. The results of computational experiments show that the developed algorithm is very useful in the deployment planning of multiple blocks from the storage yards.

Case-based Block Division Expert System in Shipbuilding (사례기반 추론에 의한 블럭분할 절문가 시스템)

  • 박철우;강신한;김광만;이재원
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.30
    • /
    • pp.161-165
    • /
    • 1994
  • The shipbuilding industry is one of the domains which need an effective computer application. Particularly the productivity of process planning of a shipbuilding for crude -oil tanker can be greatly enhanced by introducing CAPP(Computer Aied Process Planning). In this paper we describe a prototype expert system which enables block division process planning in shipbuilding. The system determines block division lines of the midship sections of oiltanker. Case-based reasoning(CBR) approach is applied for this purpose instead of rule-based one.

  • PDF

조선 중일정계획시스템을 위한 공정계획 객체 설계에 관한연구

  • 최해주;박주철
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.290-293
    • /
    • 2001
  • The mid-schedule planning of the ship is making a schedule about the process from cutting to erection. The ship consists of lots of blocks. This block has different process because of the shape of the block varies in accordance with the ship-type and the part position of the ship. The type and order of each block process initially must be generated for the mid-schedule planning. In this paper, the process planning, described as above is preparing the basic information before scheduler make a plan with the prepared manhour. The scheduling is done with this process planning which includes the information of the process order. This paper shows the research about three methods to design the process planning. First, investigate the expression method about information of the process planning for the mid-schedule planning in real workplace. Second, design the object of the process planning on the basis of investigating the expression method. Finally, develop the prototype of object on the basis of this designed process planning and then find the practical use in the mid-schedule planning. The object, which is developed in this paper, contains the main algorithm. In case of developing The Mid-Schedule Planning System, this object is expected to be utilized very easily as consisting another object.

  • PDF

CAD Interface for Block Assembly Planning using Open CASCADE (Open CASCADE를 이용한 블록조립 계획용 CAD 인터페이스)

  • 최상수;신동목
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.26-31
    • /
    • 2004
  • This paper presents a process planning system that will generate and verify assembly sequences of block assemblies. It consists of a CAD interface system and an assembly sequence planning system. In developing this system, we used an open architecture CAD kernel for the CAD interface system, for visualizing the CAD model and the assembly sequences, and an expert system shell for the assembly sequence planning system. This paper also proposes a framework for the integration of all the steps required to automate the procedures, from design to production. The process planning system is demonstrated by a simple example.

Optimal Block Transportation Path Planning of Transporters considering the Damaged Path (운송 경로 손상을 고려한 트랜스포터의 최적 블록 운송 경로 계획)

  • Heo, Ye-Ji;Cha, Ju-Hwan;Cho, Doo-Yeoun;Song, Ha-Cheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.298-306
    • /
    • 2013
  • Nowadays, a transporter manager plans the schedule of the block transportation by considering the experience of the manager, the production process of the blocks and the priority of the block transportation in shipyard. The schedule planning of the block transportation should be rearranged for the reflection of the path blocking cases occurred by unexpected obstacles or delays in transportation. In this paper, the optimal block transportation path planning system is developed for rearranging the schedule of the block transportation by considering the damaged path. $A^*$ algorithm is applied to calculate the new shortest path between the departure and arrival of the blocks transported through the damaged path. In this algorithm, the first node of the damaged path is considered as the starting position of the new shortest path, and then the shortest path calculation is completed if the new shortest path is connected to the one of nodes in the original path. In addition, the data structure for the algorithm is designed. This optimal block transportation path planning system is applied to the Philippine Subic shipyard and the ability of the rapid path modification is verified.