• Title/Summary/Keyword: Blind source separation

Search Result 90, Processing Time 0.022 seconds

Speech Enhancement Using Blind Signal Separation Combined With Null Beamforming

  • Nam Seung-Hyon;Jr. Rodrigo C. Munoz
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4E
    • /
    • pp.142-147
    • /
    • 2006
  • Blind signal separation is known as a powerful tool for enhancing noisy speech in many real world environments. In this paper, it is demonstrated that the performance of blind signal separation can be further improved by combining with a null beamformer (NBF). Cascading the blind source separation with null beamforming is equivalent to the decomposition of the received signals into the direct parts and reverberant parts. Investigation of beam patterns of the null beamformer and blind signal separation reveals that directional null of NBF reduces mainly direct parts of the unwanted signals whereas blind signal separation reduces reverberant parts. Further, it is shown that the decomposition of received signals can be exploited to solve the local stability problem. Therefore, faster and improved separation can be obtained by removing the direct parts first by null beamforming. Simulation results using real office recordings confirm the expectation.

Implementation of Blind Source Recovery Using the Gini Coefficient (Gini 계수를 이용한 Blind Source Recovery 방법의 구현)

  • Jeong, Jae-Woong;Song, Eun-Jung;Park, Young-Cheol;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • UBSS (unde-determined blind source separation) is composed of the stages of BMMR (blind mixing matrix recovery) and BSR (blind source recovery). Generally, these two stages are executed using the sparseness of the observed data, and their performance is influenced by the accuracy of the measure of the sparseness. In this paper, as introducing the measure of the sparseness using the Gini coefficient to BSR stage, we obtained more accurate measure of the sparseness and better performance of BSR than methods using the $l_1$-norm, $l_q$-norm, and hyperbolic tangent, which was confirmed via computer simulations.

Blind Image Separation with Neural Learning Based on Information Theory and Higher-order Statistics (신경회로망 ICA를 이용한 혼합영상신호의 분리)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1454-1463
    • /
    • 2008
  • Blind source separation by independent component analysis (ICA) has applied in signal processing, telecommunication, and image processing to recover unknown original source signals from mutually independent observation signals. Neural networks are learned to estimate the original signals by unsupervised learning algorithm. Because the outputs of the neural networks which yield original source signals are mutually independent, then mutual information is zero. This is equivalent to minimizing the Kullback-Leibler convergence between probability density function and the corresponding factorial distribution of the output in neural networks. In this paper, we present a learning algorithm using information theory and higher order statistics to solve problem of blind source separation. For computer simulation two deterministic signals and a Gaussian noise are used as original source signals. We also test the proposed algorithm by applying it to several discrete images.

Sparse Kernel Independent Component Analysis for Blind Source Separation

  • Khan, Asif;Kim, In-Taek
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.121-125
    • /
    • 2008
  • We address the problem of Blind Source Separation(BSS) of superimposed signals in situations where one signal has constant or slowly varying intensities at some consecutive locations and at the corresponding locations the other signal has highly varying intensities. Independent Component Analysis(ICA) is a major technique for Blind Source Separation and the existing ICA algorithms fail to estimate the original intensities in the stated situation. We combine the advantages of existing sparse methods and Kernel ICA in our technique, by proposing wavelet packet based sparse decomposition of signals prior to the application of Kernel ICA. Simulations and experimental results illustrate the effectiveness and accuracy of the proposed approach. The approach is general in the way that it can be tailored and applied to a wide range of BSS problems concerning one-dimensional signals and images(two-dimensional signals).

Post-Processing of IVA-Based 2-Channel Blind Source Separation for Solving the Frequency Bin Permutation Problem (IVA 기반의 2채널 암묵적신호분리에서 주파수빈 뒤섞임 문제 해결을 위한 후처리 과정)

  • Chu, Zhihao;Bae, Keunsung
    • Phonetics and Speech Sciences
    • /
    • v.5 no.4
    • /
    • pp.211-216
    • /
    • 2013
  • The IVA(Independent Vector Analysis) is a well-known FD-ICA method used to solve the frequency permutation problem. It generally works quite well for blind source separation problems, but still needs some improvements in the frequency bin permutation problem. This paper proposes a post-processing method which can improve the source separation performance with the IVA by fixing the remaining frequency permutation problem. The proposed method makes use of the correlation coefficient of power ratio between frequency bins for separated signals with the IVA-based 2-channel source separation. Experimental results verified that the proposed method could fix the remaining frequency permutation problem in the IVA and improve the speech quality of the separated signals.

Blind Source Separation Algorithm using the Second-Order Statistics (이차 통계치를 이용한 블라인드 신호분리 알고리즘)

  • 김천수;양완철;이병섭
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.107-114
    • /
    • 2002
  • The problem of blind signal separation of independent sources consist in retrieving the source from the observation of unknown mixtures of unknown sources. In this paper, we propose a technique for blind signal separation that can extract original signals from their non-stationary mixtures observed in a ordinary room. The proposed method implements blind signal separation by minimizing a non-negative cost function that achieves the minimum when the second-order cross-correlation value of the observed signals becomes zero. The validity of the proposed method has been verified by a computer simulation and experiment that extracts two source signals from their mixtures observed in a normal room.

Blind Source Separation U sing Variable Step-Size Adaptive Algorithm in Frequency Domain

  • Park Keun-Soo;Lee Kwang-Jae;Park Jang-Sik;Son Kyung Sik
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.6
    • /
    • pp.753-760
    • /
    • 2005
  • This paper introduces a variable step-size adaptive algorithm for blind source separation. From the frequency characteristics of mixed input signals, we need to adjust the convergence speed regularly in each frequency bin. This algorithm varies a step-size according to the magnitude of input at each frequency bin. This guarantee of the regular convergence in each frequency bin would become more efficient in separation performances than conventional fixed step-size FDICA. Computer simulation results show the improvement of about 5 dB in signal to interference ratio (SIR) and the better separation quality.

  • PDF

Multi-channel Speech Enhancement Using Blind Source Separation and Cross-channel Wiener Filtering

  • Jang, Gil-Jin;Choi, Chang-Kyu;Lee, Yong-Beom;Kim, Jeong-Su;Kim, Sang-Ryong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2E
    • /
    • pp.56-67
    • /
    • 2004
  • Despite abundant research outcomes of blind source separation (BSS) in many types of simulated environments, their performances are still not satisfactory to be applied to the real environments. The major obstacle may seem the finite filter length of the assumed mixing model and the nonlinear sensor noises. This paper presents a two-step speech enhancement method with multiple microphone inputs. The first step performs a frequency-domain BSS algorithm to produce multiple outputs without any prior knowledge of the mixed source signals. The second step further removes the remaining cross-channel interference by a spectral cancellation approach using a probabilistic source absence/presence detection technique. The desired primary source is detected every frame of the signal, and the secondary source is estimated in the power spectral domain using the other BSS output as a reference interfering source. Then the estimated secondary source is subtracted to reduce the cross-channel interference. Our experimental results show good separation enhancement performances on the real recordings of speech and music signals compared to the conventional BSS methods.

Experimental study on bridge structural health monitoring using blind source separation method: arch bridge

  • Huang, Chaojun;Nagarajaiah, Satish
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.69-87
    • /
    • 2014
  • A new output only modal analysis method is developed in this paper. This method uses continuous wavelet transform to modify a popular blind source separation algorithm, second order blind identification (SOBI). The wavelet modified SOBI (WMSOBI) method replaces original time domain signal with selected time-frequency domain wavelet coefficients, which overcomes the shortcomings of SOBI. Both numerical and experimental studies on bridge models are carried out when there are limited number of sensors. Identified modal properties from WMSOBI are analyzed and compared with fast Fourier transform (FFT), SOBI and eigensystem realization algorithm (ERA). The comparison shows WMSOBI can identify as many results as FFT and ERA. Further case study of structural health monitoring (SHM) on an arch bridge verifies the capability to detect damages by combining WMSOBI with incomplete flexibility difference method.

An Active Noise Canceller with Blind Source Separation (Blind 신호원 분류를 갖는 능동 소음 제거기)

  • 손준일;이민호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.3-8
    • /
    • 1999
  • In this paper, we propose a new active noise control system that cancels the only noise signal from the mixture selectively. A blind source separation realized by a dynamic recurrent neural network is used as a preprocessor of the active noise control system and separates the desired signal and the noise signal. The active noise control system adaptively generates an anti-noise signal to remove the only noise signal separated by the blind source separation. Computer simulation results show that the proposed scheme is effective to construct a selective attention system.

  • PDF