• 제목/요약/키워드: Blind image separation

검색결과 8건 처리시간 0.019초

신경회로망 ICA를 이용한 혼합영상신호의 분리 (Blind Image Separation with Neural Learning Based on Information Theory and Higher-order Statistics)

  • 조현철;이권순
    • 전기학회논문지
    • /
    • 제57권8호
    • /
    • pp.1454-1463
    • /
    • 2008
  • Blind source separation by independent component analysis (ICA) has applied in signal processing, telecommunication, and image processing to recover unknown original source signals from mutually independent observation signals. Neural networks are learned to estimate the original signals by unsupervised learning algorithm. Because the outputs of the neural networks which yield original source signals are mutually independent, then mutual information is zero. This is equivalent to minimizing the Kullback-Leibler convergence between probability density function and the corresponding factorial distribution of the output in neural networks. In this paper, we present a learning algorithm using information theory and higher order statistics to solve problem of blind source separation. For computer simulation two deterministic signals and a Gaussian noise are used as original source signals. We also test the proposed algorithm by applying it to several discrete images.

Multiple Mixed Modes: Single-Channel Blind Image Separation

  • Tiantian Yin;Yina Guo;Ningning Zhang
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.858-869
    • /
    • 2023
  • As one of the pivotal techniques of image restoration, single-channel blind source separation (SCBSS) is capable of converting a visual-only image into multi-source images. However, image degradation often results from multiple mixing methods. Therefore, this paper introduces an innovative SCBSS algorithm to effectively separate source images from a composite image in various mixed modes. The cornerstone of this approach is a novel triple generative adversarial network (TriGAN), designed based on dual learning principles. The TriGAN redefines the discriminator's function to optimize the separation process. Extensive experiments have demonstrated the algorithm's capability to distinctly separate source images from a composite image in diverse mixed modes and to facilitate effective image restoration. The effectiveness of the proposed method is quantitatively supported by achieving an average peak signal-to-noise ratio exceeding 30 dB, and the average structural similarity index surpassing 0.95 across multiple datasets.

A METHOD FOR STRUCTURED LINEAR TOTAL LEAST NORM ON BLIND DECONVOLUTION PROBLEM

  • Oh, Se-Young;Kwon, Sun-Joo;Yun, Jae-Heon
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.151-164
    • /
    • 2005
  • The regularized structured total least norm (RSTLN) method finds an approximate solution x and error matrix E to the overdetermined linear system (H + E)x $\approx$ b, preserving structure of H. A new separation scheme by parts of variables for the regularized structured total least norm on blind deconvolution problem is suggested. A method combining the regularized structured total least norm method with a separation by parts of variables can be obtain a better approximated solution and a smaller residual. Computational results for the practical problem with Block Toeplitz with Toeplitz Block structure show the new method ensures more efficiency on image restoration.

A TWO-STAGE SOURCE EXTRACTION ALGORITHM FOR TEMPORALLY CORRELATED SIGNALS BASED ON ICA-R

  • Zhang, Hongjuan;Shi, Zhenwei;Guo, Chonghui;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.1149-1159
    • /
    • 2008
  • Blind source extraction (BSE) is a special class of blind source separation (BSS) methods, which only extracts one or a subset of the sources at a time. Based on the time delay of the desired signal, a simple but important extraction algorithm (simplified " BC algorithm")was presented by Barros and Cichocki. However, the performance of this method is not satisfying in some cases for which it only carries out the constrained minimization of the mean squared error. To overcome these drawbacks, ICA with reference (ICA-R) based approach, which considers the higher-order statistics of sources, is added as the second stage for further source extraction. Specifically, BC algorithm is exploited to roughly extract the desired signal. Then the extracted signal in the first stage, as the reference signal of ICA-R method, is further used to extract the desired sources as cleanly as possible. Simulations on synthetic data and real-world data show its validity and usefulness.

  • PDF

Blind Color Image Watermarking Based on DWT and LU Decomposition

  • Wang, Dongyan;Yang, Fanfan;Zhang, Heng
    • Journal of Information Processing Systems
    • /
    • 제12권4호
    • /
    • pp.765-778
    • /
    • 2016
  • In watermarking schemes, the discrete wavelet transform (DWT) is broadly used because its frequency component separation is very useful. Moreover, LU decomposition has little influence on the visual quality of the watermark. Hence, in this paper, a novel blind watermark algorithm is presented based on LU transform and DWT for the copyright protection of digital images. In this algorithm, the color host image is first performed with DWT. Then, the horizontal and vertical diagonal high frequency components are extracted from the wavelet domain, and the sub-images are divided into $4{\times}4$ non-overlapping image blocks. Next, each sub-block is performed with LU decomposition. Finally, the color image watermark is transformed by Arnold permutation, and then it is inserted into the upper triangular matrix. The experimental results imply that this algorithm has good features of invisibility and it is robust against different attacks to a certain degree, such as contrast adjustment, JPEG compression, salt and pepper noise, cropping, and Gaussian noise.

A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

  • Lee, Dong-Sup;Cho, Dae-Seung;Kim, Kookhyun;Jeon, Jae-Jin;Jung, Woo-Jin;Kang, Myeng-Hwan;Kim, Jae-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.128-141
    • /
    • 2015
  • Independent Component Analysis (ICA), one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: instability and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to validate the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.

독립 성분 분석을 이용한 얼굴인식 (Face recognition by using independent component analysis)

  • 김종규;장주석;김영일
    • 전자공학회논문지C
    • /
    • 제35C권10호
    • /
    • pp.48-58
    • /
    • 1998
  • 신호처리 분야에서 미지의 신호원 분리에 주로 응용되는 독립 성분 분석법을 이용하여 얼굴인식을 할 수 있는 한 방식을 제안하였다. 하나의 얼굴영상 자체가 통계적으로 서로 독립인 어떤 미지의 특징영상의 합으로 표현될 수 있다고 가정하고 이 특징영상을 독립성분분석을 이용하여 구한 후, 새로운 얼굴이나 변화된 얼굴을 특징영상의 공간에 투영시켜 투영된 성분을 기준 얼굴영상과 비교하는 방법으로 인식을 수행하였다. 변화가 심한 여러 얼굴영상으로 구성된 데이터베이스(한 사람 당 10개씩의 변화된 400개의 얼굴 영상)에 대해 얼굴인식 실험을 수행하였고 또한 주성분 분석에 기초한 고유얼굴을 이용한 인식률과 비교 분석하였다. 제안된 방식은 주성분 분석법에 비해 높은 인식률을 제공하며, 특히 입력 얼굴 영상에 첨가되는 랜덤 잡음에 대단히 강한 특성을 갖는다.

  • PDF

RGB영상의 독립성분분석을 이용한 건고추영상 분류 (Dried pepper sorting using independent component analysis on RGB images)

  • 권기현;임정대
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권4호
    • /
    • pp.59-65
    • /
    • 2012
  • 고추는 건조과정에서 부패되거나 색이변하는 경우가 발생하므로 건고추 품질을 높이기위해서는 건고추를 선별 할 수 있는 기법이 필요하다. 독립성분분석은 블라인드소스분리에서 가장 널리 사용되는 방법으로 이 기법을 사용하여 건조시킨 고추 영상에서 가장 중요한 성분에 대한 농축영상을 얻는다. 취득한 농축영상은 일반 이진(BW) 영상과 달리 주요 성분만 반영한 것으로 영상의 주요 성분 분포 상태를 알 수 있으며 품질을 판단하여 선별하는 것이 가능하다. 또한, 추출된 농축영상의 크기는 고추의 매운 맛을 내는 주요 성분인 캡사이신류의 양과 관련성이 있음을 알 수 있다. ICA 독립성분을 기반으로 한 농축영상 추출을 통해 고추 건조과정에서 부패되어 색상이 좋지 않거나 캡사이신류과 같은 주요 성분이 없게 된 고추를 선별해하는 방법을 제안한다.