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Abstract 

As one of the pivotal techniques of image restoration, single-channel blind source separation (SCBSS) is 

capable of converting a visual-only image into multi-source images. However, image degradation often results 

from multiple mixing methods. Therefore, this paper introduces an innovative SCBSS algorithm to effectively 

separate source images from a composite image in various mixed modes. The cornerstone of this approach is a 

novel triple generative adversarial network (TriGAN), designed based on dual learning principles. The TriGAN 

redefines the discriminator's function to optimize the separation process. Extensive experiments have 

demonstrated the algorithm's capability to distinctly separate source images from a composite image in diverse 

mixed modes and to facilitate effective image restoration. The effectiveness of the proposed method is 

quantitatively supported by achieving an average peak signal-to-noise ratio exceeding 30 dB, and the average 

structural similarity index surpassing 0.95 across multiple datasets. 
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1. Introduction 

Single-channel blind source separation (SCBSS) is a technique primarily used to isolate source signals 

from a single-channel mixed signal [1], and the mixing methods of mixed signals mainly include linear 

and convolution mixing, which play a vital role in denoising and restoration processes across various 

fields. These fields include medical research [2], image processing [3], speech processing [4], video 

processing [5], traffic signals [6] and other fields. 

Historically, traditional SCBSS algorithms have primarily addressed the linear hybrid mode, such as 

nonnegative matrix factorization (NMF) [7] and independent component correlation algorithm (ICA) [8]. 

These methods grounded in the principles of linear equations to separate the source signal, are proficient 

in recovering the source signal from linearly mixed signals. However, they fall short in handling 

recovering the source signal from convolutionally mixed signals, which present a more complex 

challenge compared to linear mixing. To address this gap, researchers have further proposed a regression-

based method [9]. This method learns the complex mapping relationship between mixed signal and source 

signal through the robust learning capabilities of deep neural networks. Despite their effectiveness, a 
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significant limitation of these methods is their dependency on a predefined convolution mixing matrix. 

Consequently, any alterations in the mixing matrix render a trained model incapable of separating the 

new test set., highlighting a critical area for further research and development in SCBSS. 

The SCBSS algorithms mainly include: the blind deconvolution algorithm proposed by Fan et al. [10] 

and Stoller et al. [11] was used to recover the source signal. Building upon this, Lin and Gao [12] 

introduced a blind source separation (BBS) algorithm combined with a high-order spectrum. While this 

algorithm exhibits some capability in separating mixed convolutional signals, it is marked by high 

computational demands and inefficient. Meanwhile, the application of convolutional neural networks 

[13] and fully connected neural networks [14] has been explored for separating mixed source signals and 

facilitating blind deconvolution. In terms of audio, recurrent neural networks [15] have shown proficiency 

in separating speech from mixed noise. In addition, automatic encoders [16] have been employed for 

supervised separation of source signals. In 2014, after the generative adversarial network (GAN) was 

proposed [17], Subakan and Smaragdis [18] presented a GAN-based SCBSS algorithm in the audio field. 

However, this method requires prior knowledge of the mixing matrix type and assumes that the mixing 

matrix and the source signal share the same distribution for training. Addressing the challenge of an 

unknown mixing matrix, Kong et al. [19] proposed a synthesis decomposition (S-D) algorithm utilizing 

deep convolutional generic adversarial networks (DCGAN). This approach, which does not require prior 

knowledge of the convolutional mixing matrix, has achieved notable success. However, this method is 

only for the source image separation of convolution mixing images. Aiming at the separation of multi-

channel source signals, Liu et al. [20] estimated the source signal and mixing matrix through a 

reconstruction approach based on the minimum error of the observation signal and Bayesian maximum 

a posteriori estimation method. 

In the actual process of composite image restoration, source images are often mixed through various 

mixing methods. To solve this problem, a closed-loop triple generative adversarial network (TriGAN) 

structure is constructed in this paper grounded in the dual learning concept, which learns the mapping 

relationship between the composite image and the source image, and breaks through the internal 

mathematical model disparities of source image separation caused by different mixing methods. The 

discriminator continuously updates the generator with feedback information until the generator reaches 

the optimal solution. Unlike previous models, TriGAN's discriminator calculates the loss at the granular 

level of 1 × 1 pixel block, utilizing the least square method to separate the difference between the image 

and the pixel block of the source image. In this way, the SCBSS of different mixed images is realized, 

thereby enhancing source image restoration. The rest of the paper is organized as follows. Section 2 

presents mathematical models of the two main hybrid approaches in SCBSS. Section 3 elucidates the 

functioning of the TriGAN discriminator and outlines its training procedure. To demonstrate the 

effectiveness of the position of the discriminator proposed in this paper, Section 4 shows the efficiency 

of the discriminator under various conditions. Additionally, the experimental results in the second part 

of Section 4 reveal the effectiveness of TriGAN. Section 5 gives the conclusion. 

 

 

2. Mathematical Model of SCBSS 

Through extensive research efforts over the years, SCBSS models can be classified into two types: the 

linear mixing model and the convolution mixing model. The linear mixing model is widely recognized 
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as the more common and mature method within the SCBSS domain. Notably, other complex mixing 

methods can be transformed into this model through mathematical transformation. The focus of the 

algorithm presented in this paper is on scenarios involving two source images, denoted as S = �S�, S��. 
These source images S� and S� undergo a linear addition process to form a linearly mixed image X. The 

mathematical model representing this linear combination is expressed as follows: 

 

X��� = ��S���� + ��S����, (1) 

 

where the mixture matrix is represented by �. 

Contrasting with linear mixing, convolution mixing presents a more complex scenario in SCBSS. The 

key distinction lies in its mixing approach: rather than a straightforward linear relationship, convolution 

mixing involves a matrix convolution operation. In situations where the mixed image is the sole 

observational image X, the convolution mixed SCBSS mathematical model can be expressed as: 

 

X��� = �∝�∗ S����� + �∝�∗ S�����. (2) 
 

The symbol "*" indicates convolution operation: 

 

X��� = � 	∝� �� − 
�S��
� +∝� �� − 
�S��
���
��
, (3) 

 

where 
� is the Euclidean space and ∝ denotes the convolution mixing matrix. When only the observed 

image X is available, the SCBSS algorithm normally solves for the remaining unknowns by assuming 

one of the unknowns in mathematical solutions for the mixing matrix �, the convolutional mixing matrix 

∝ and the source image S. This process often presupposes knowledge of the mixing matrix type, utilizing 

it to resolve for the source image S. 

The solution process varies with the type of the mixing matrix. Consequently, this variability poses a 

challenge for SCBSS algorithms in addressing the separation of source images under multiple hybrid 

methods. This paper endeavors to transcend these mathematical model constraints of SCBSS. By 

leveraging the inherent feature information of the blended image, the study aims to surmount the 

variations inherent in mixing methods. This approach seeks to accomplish comprehensive, thereby 

enhancing the versatility of the SCBSS algorithm in the realm of image restoration. 

 

 

3. Proposed TriGAN 

Building upon the foundation of the dual learning generative adversarial network (DualGAN), TriGAN 

consists of three GANs, which involves three image domains instead of dealing with the direct 

transformation problem of two image domains, diverging from the traditional approach of handling the 

direct transformation between two image domains. Instead, TriGAN employs a cyclic network structure 

to facilitate the learning of mapping relationships across these domains: from the visible image domain 

X to source image domain S�, source image domain S� to source image domain S�, and source image 

domain S� to visible image domain domain X. 

The generators of TriGAN retain the structural essence of the original GAN, but introduce a redefined 

operational mode for the discriminators. The generators, denoted as G�→�� , G��→�� , ��� G��→�  are 
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mirrored by their corresponding discriminators D�→��, D��→��, ��� D��→�. Among them, the network 

architecture of the three generators is consistent, with each generator having the identical number of 

downsampling and upsampling layers. Additionally, mirror downsampling and upsampling layers are 

integrated between the generators. This inclusion, along with the implementation of jump connections, 

form a U-shaped structure that facilitates the sharing of low-level information between the input and 

generated image, thus enabling rapid convergence of the generators. The structure of the three 

discriminators follows the same pattern, except that, instead of using the DualGAN discriminators, a new 

discriminator is distributed over each pixel block of the whole image, creating a loss function between 

the blocks. This captures high frequency features more effectively on a pixel by pixel basis, making full 

use of the texture, color and style information inherent in the visible image. 

In order to better and effectively learn the mapping relationship between two image domains for the 

deep learning network, the discriminator D�→��, D��→��, and D��→� adopts the core principle of the least 

square method to calculate the error between each pixel of the generated image � and the real image 
. 

The total error for each pixel block being calculated during the training process as follows: 

 

∑�
 − ���. (4) 
 

Real image 
 ∈ �X, S�, S��, � is generated by three generators corresponding to it. 

The initial Gaussian distribution generates images randomly during the generation, so the errors are 

incurred randomly and these fluctuate up and down around the true value. At the point where the total 

error is small, it gets closer to the true value. The minimal total error is obtained when the derivative of 


 equals 0. 

 

�∑
���
�

��
= 2∑�
 − ��� = 0. (5) 

 

Then TriGAN is using this concept as a loss function, replacing the loss function of DualGAN, and the 

objective function of TriGAN can be expressed as follows: 

 

min����������� =
�

�
��~�����
�
	���
� − ���� +

�

�
���~��
��
 ��������� − ����. (6) 

 

In the discriminator's objective function, the real data and the generated data are encoded, respectively. 

The discriminator D�→�� , D��→�� , D��→� calculates the loss in pixels, and after its objective function 

reaches an optimal value, the generator is fine-tuned to create images that are increasingly akin to the 

domains X, S�, S�. The loss function for the new discriminator captures the distance of the image from 

the decision boundary, whereas allowing the more distant data to receive a penalty term in proportion to 

the distance, Therefore, for the discriminator's gradient to converge to zero, the generator image must 

closely approximate the real image’s position. By replacing DualGAN's loss function with this new 

method, TriGAN mitigates instability issues. The training process in TriGAN begins with fixing the 

generator and then focuses on training the discriminator: 

 

min����������� =
1

2
��~�����
�
	���
� − ���� +

1

2
��~���
�
 ��������� − ���� 

=
�

�
� ������
�	��
� − ����� +
�

�

�
� ������������� − �����
�

. 

(7) 

 

The calculated optimal solution of the discriminator is: 
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�∗ �
� =
������
�
����
�


�����
�
���
�

. (8) 

 

Once the discriminator attains its optimal state, the discriminator is fixed, and the generator is trained 

until its objective function also reaches an optimal solution. 

The training procedure for TriGAN is summarized in Algorithm 1. 

 

Algorithm 1. TriGAN training procedure 

Require: The mixed image domain X, source image domain S� and source image domain S� are established. 

Generator: G�→�� , G��→�� , G��→� . Discriminator: D�→�� , D��→�� , D��→� . Number of iterations: 

�������, Bach size = 120. 

1. Randomly initialize the generator and discriminator. 

2. m groups of image samples �
�
, ⋯ , �
 
, ��

�
, ⋯ , ��


 
, ��

�
, ⋯ , ��


 
 are extracted in pixels from the 

real data space of image domain X, image domain S� and image domain S�. 

3.  Repeat 

4.    for � = 1,⋯ ,������� do 

5.      image sample: ��
 
�
 !�

��"
⊆ X，���


 
�
 !�

��"
⊆ S�，���


 
�
 !�

��"
⊆ S� 

6.      fix the generator and update the discriminator 

7.      the objective function of the discriminator reaches its optimal solution 

8.      image sample:  ��
 
�
 !�

��"
⊆ X，���


 
�
 !�

��"
⊆ S�，���


 
�
 !�

��"
⊆ S� 

9.      fix the discriminator and update the generator 

10.    the objective function of the generator reaches its optimal solution 

11.  end for 

12. Continue the training process until convergence is achieved. 

 

 

4. Experimental Results 

In this paper, the MNIST dataset, ancient Chinese character image dataset [21] and RESIDE dataset 

were employed to ascertain the efficacy of TriGAN model. In addition, each experiment was repeated 50 

times, with the average of the training results being considered for analysis. 

 

4.1 Proposed Discriminator Works 

To verify the efficiency of which the discriminator of TriGAN calculates the error between the 

generated image � and the real image R at a granular leve of 1×1 pixels experiments were conducted 

based on the MNIST dataset. The normalized image size was 28 × 28 pixels. In this paper, the image 

samples were divided into six cases of 1 × 1 , 2 × 2 , 4 × 4 , 7 × 7 , 16 × 16 , and 28 × 28  pixels, 

respectively in order to compare the correlation between their separated images and source images and 

to evaluate the work efficiency of TriGAN under the condition of different image sample sizes. The 

correlation between S and S′ is: 

 


���� � = ! S���S′�� +  �
#

�!�#

 (9) 
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Table 1 shows the correlation between S and S′ of 1 × 1, 2 × 2, 4 × 4, 7 × 7, 16 × 16, and 28 × 28 

pixels. A 1 × 1 approach yields a mean correlation of 0.9072. The 2 × 2, 4 × 4, 7 × 7, 16 × 16, and 

28 × 28 pixels approach achieves lower and lower correlation means of 0.8970, 0.7769, 0.5659, 0.1895 

and 0.1180, respectively. 

 

Table 1. Correlation between source signal S�, S�  and separated signal S�
� , S�

�  under different image 

sample division units 

Unit Correlation between �	 and �	

  Correlation between �� and ��


  Correlation mean 

1 × 1 0.9138 0.9007 0.9072 

2 × 2 0.8987 0.8954 0.8970 

4 × 4 0.7714 0.7824 0.7769 

7 × 7 0.5506 0.5812 0.5659 

16 × 16 0.1967 0.1824 0.1895 

28 × 28 0.1160 0.1200 0.1180 

Bold indicates the best results. 

 

Stronger correlation indicates higher degree of image similarity. Table 1 illustrates that the separation 

image S′ has the highest correlation with the source image S when the method in this paper divides the 

image samples to calculate the loss in 1 × 1 pixels. The correlation between the separation image S′ and 

the source image S is similar when the segmentation units of the image samples are of the same size. As 

the segmentation unit size increases, the correlation decreases. This suggests that the pixel-level loss 

calculation employed by the TriGAN discriminator is more effective than the traditional GAN’s global 

loss calculation and DualGAN’s texture-based loss calculation. 

In addition to the change of the working unit of the TriGAN discriminator, the loss function of the 

TriGAN discriminator has also changed. In order to verify that the new loss function is effective, an 

experiment was conducted replacing the original loss function of DualGAN with the new loss function. 

The incorporation of this new loss function into DualGAN resulted in a significant improvement in the 

restoration of synthetic images. In this section, the proposed loss function is applied in DualGAN to solve 

image-to-image translation. We carry out experiments on RESIDE dataset as starting research for this 

challenging problem and show the effectiveness of the proposed new discriminator. The dataset, known 

as real single image defogging (RESIDE), is a large-scale resource designed to enable fair evaluation and 

comparison of single image defogging algorithms. The experimental results are shown in Fig. 1. 

Fig. 1 shows RESIDE dataset for image-to-image separate experiment (campsite): Icom (1) (2) (3) (4) 

the composite image, Isou (1) (2) (3) (4) the source image, IDGs (1) (2) (3) (4) DualGAN separate image 

[22], INDs (1) (2) (3) (4) this paper proposed new discriminator works globally separate image, INDs 1 × 1  

(1) (2) (3) (4) this paper proposed new discriminator works 1 × 1 pixel unit separate image. 

The first and second column of Fig. 1 demonstrate the composite and source image from the RESIDE 

dataset. The third column shows the separate image using DualGAN which has been notably successful 

in image-to-image for two image domains. The fourth column indicates that the new discriminator 

proposed in this paper works alone on a global scale. Fig. 1 indicate that this new discriminator generates 

images more closely resembling the source images compared to the original DualGAN. 

The new discriminator addresses the issues of poor image generation quality and unstable training. The 
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traditional loss function in DualGAN does not allow the generator to continue to generate images that the 

discriminator discriminates as real images, especially when these images are still notably different from 

the real image. Utilizing the least squares method, the new approach calculates the distance of the image 

from the decision boundary, assigning a penalty term proportional to the distance to more distant data. 

This method ensures that the discriminator’s gradient approaches zero, compelling the generator to 

produce images that more closely align with the real image’s location, as shown in Fig. 2. 

 

 
Fig. 1. Restoration result graph of composite image. 

 

 

Fig. 2. Proximity of fake samples to real samples and the loss function decision boundary. 
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Fig. 3. PSNR and SSIM result graph. 

 

Fig. 3 shows 500 synthetic images based on the RESIDE dataset, in which the image-to-image 

separation experiment was completed. A total of four methods were compared.  

1) DualGAN [22]: This method uses the standard DualGAN approach for image separation.  

2) New D with 28 × 28  unit: Here, the original DualGAN discriminator is replaced with a new 

discriminator, operating at a 28 × 28 pixel unit scale (global operation).  

3) New D with 14 × 14 unit: This approach also involves replacing DualGAN's original discriminator, 

but with the discriminator's operational unit modified to 14 × 14 pixels.  

4) New D with 1 × 1 unit: The final method features the new discriminator with an operational unit of 

1 × 1 pixel, as proposed in this paper. 

 

4.2 TriGAN Separates Different Mixed Images 

Trigan can separate both the convolutionally mixed image and the linearly mixed image. The separation 

results are shown in Figs. 4 and 5. Experiments in this paper were conducted on 600 pairs of randomly 

selected images in the MNIST dataset. The MNIST dataset was mainly composed of handwritten numeral 

images and their corresponding labels. There are 10 types of images, ranging from 0 to 9, with a total of 

10 Arabic numerals. These images were blended into 600 convolutionally blended images and 600 

linearly blended images. After applying TriGAN to separate the mixed images, the peak signal-to-noise 

ratio (PSNR) and structural similarity index (SSIM) were used to evaluate the degree of deviation of each 

separated image from its source image, and the average value of 600 groups of experimental PSNR and 

SSIM were calculated, respectively. I edited for clarity here. 

Please review to make sure your intent has been maintained. 

 

Table 2. Based on 600 pairs of convolutionally/linearly mixed images, the average PSNR and average 

SSIM in different methods 

  ICA [16] S-D [19] Proposed method 

Convolution mixing 

 

������������ (dB) 8.7 23.3 31.0447 

����������� 0.38 0.87 0.95 

Linear mixing 

 

������������ (dB) 15.3 26.4 34.8251 

����������� 0.46 0.92 0.97 
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Table 3. Based on 600 pairs of loss of ancient Chinese characters images, the average PSNR and 

average SSIM in different methods 

 DCSS [21] Proposed method 

Average PSNR (dB) 29.2 32.6 

Average SSIM 90.3 96.7 

 

Fig. 4 shows MNIST dataset convolutionally mixing image experiment (campsite): Icm (1) (2) (3) the 

convolutionally mixing image, Isou1 (1) (2) (3) the source image "$, Isep1 (1) (2) (3) the separate image "$� , 
Isou2 (1) (2) (3) the source image "%, Isep2 (1) (2) (3) the separate image "%� . Fig. 5 shows MNIST dataset 

linearly mixing image experiment (campsite): Ilm (1) (2) (3) the linearly mixing image, Isou1 (1) (2) (3) the 

source image "$, Isep1 (1) (2) (3) the separate image "$� , Isou2 (1) (2) (3) the source image "%, Isep2 (1) (2) 

(3) the separate image "%� . 
 

 

Fig. 4. Convolutionally mixed image restoration for MNIST datasets. 

 

 

Fig. 5. Linearly mixing image restoration for MNIST datasets. 

 

Image-restoration represents a significant application of SCBSS. Yin et al. [21] presented the 

restoration of ancient Chinese characters using SCBSS and creating a specialized dataset for ancient 

Chinese characters. Fig. 6 shows sample datasets, comprising five sets of ancient Chinese character image 

sets randomly selected from the database, each training set has 4,096 images, 2,048 images of ancient 

Chinese characters and occlusion respectively, and the test set had 512 images, with an equal split of 256 

images each for ancient Chinese characters and occlusion. This paper leverages the ancient Chinese 

character dataset to restore ancient Chinese character images, differentiating the source from these images 

and contrasting the results with the single-channel blind deconvolution algorithm based on deep 

convolution generating adversarial network (DCSS) method proposed by Yin et al. [21]. 
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Fig. 6. A sample of the ancient Chinese character datasets: Ianc ancient Chinese characters image, Iocc 

occlusion image, Icom composite image. 

 

 

Fig. 7. Restoration results of ancient Chinese character datasets. 

 

Fig. 7 shows the experiment with the ancient Chinese character datasets, illustrating the following: Icha 

(1) (2) (3) is the ancient Chinese character image; Isou1 (1) (2) (3) refers to the ancient Chinese characters 

source image; IDCs1 (1) (2) (3) represents the ancient Chinese characters separate image by DCSS; Iour1 

(1) (2) (3) is the ancient Chinese characters separate image by this paper method; Isou2 (1) (2) (3) is the 

occlusion source image; IDCs2 (1) (2) (3) denotes the occlusion separate image by DCSS and Iour2 (1) (2) 

(3) is the occlusion separate image by this paper method. 

 

 

5. Conclusion 

In this paper, a novel TriGAN closed-loop structure is constructed. It is an attempt to surpass the 

constraints of the SCBSS mathematical model, making full use of the inherent feature information of the 

blended image and overcoming the inherent variation among ways of mixes and fulfil the separation 

process of the source image. The experimental results demonstrate the generality of the SCBSS algorithm 

in image restoration. A new discriminator is used to calculate the pixel loss of the generated image. This 

methodology enables the separation of source images from a single blended image without prior 

knowledge of the mixing matrix, a notable breakthrough in the field. The experimental results show that 

this algorithm is applicable to convolutionally mixed image and linearly mixed image, and outperforms 

other blind source separation algorithms. In addition, it has yielded exceptional results in the restoration 

of ancient Chinese characters, significantly improving their restoration effect. 
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