• Title/Summary/Keyword: Blending Algorithm

Search Result 58, Processing Time 0.021 seconds

Hybrid Motion Blending Algorithm of 3-Axis SCARA Robot based on $Labview^{(R)}$ using Parametric Interpolation (매개변수를 이용한 $Labview^{(R)}$ 기반의 3축 SCARA로봇의 이종모션 제어 알고리즘)

  • Chung, Won-Jee;Ju, Ji-Hun;Lee, Kee-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.154-161
    • /
    • 2009
  • In order to implement continuous-path motion on a robot, it is necessary to blend one joint motion to another joint motion near a via point in a trapezoidal form of joint velocity. First, the velocity superposition using parametric interpolation is proposed. Hybrid motion blending is defined as the blending of different two type's motions such as blending of joint motion with linear motion, in the neighborhood of a via point. Second, hybrid motion blending algorithm is proposed based on velocity superposition using parametric interpolation. By using a 3-axis SCARA (Selective Compliance Assembly Robot Arm) robot with $LabVIEW^{(R)}$ $controller^{(1)}$, the velocity superposition algorithm using parametric interpolation is shown to result in less vibration, compared with PTP(Point- To-Point) motion and Kim's algorithm. Moreover, the hybrid motion $algorithm^{(2)}$ is implemented on the robot using $LabVIEW^{(R)(1)}$ programming, which is confirmed by showing the end-effector path of joint-linear hybrid motion.

Design and Evaluation of Blending Algorithm for Rate Adaptive Pace: Simulation Study (심박수 적응형 심박 조율 알고리즘 설계 및 평가: 시뮬레이션 연구)

  • Myoung, Hyoun-Seok;Lee, Kyoung Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.32-37
    • /
    • 2019
  • In this study, we designed a blending algorithm for rate adaptive pacing for cardiac pacemaker. Generally, rate adaptive pacing (RAP) is applied to patients whose heart rate does not rise during exercise for chronotropic incompetence (CI) patient. It is very important to develop an algorithm for RAP that can be properly applied to CI patients. In order to design an RAP algorithm we used dual sensors. Firstly, we designed a bio-signal measurement system based on the dual sensors, which are accelerometer and respiratory system. Secondly, we conducted treadmill test for the simulation experiment while using 3-lead ECG as reference. Finally, we designed a blending algorithm based on activation state of the dual sensors. The proposed blending algorithm was subdivided into three sections based on the accelerometer signal, which are rapidly increased section (W1), hardly changed section (W2), and decreased section (W3). Each weight is set aside for each section. To evaluate this algorithm, ten healthy adult males were participated. The correlation and Root Mean Square Error between the proposed algorithm and the reference were compared, and shown to be r=0.88 and 2.82 bpm, respectively. These results show that the proposed blending algorithm of dual sensors enables proper tracking of the heart rate during exercise. Also, it shows the possibility that the proposed blending algorithm can be applied to improve quality of life of the chronotropic incompetence patient.

Blending between machining data of surfaces (가공데이터로 주어진 곡면 간의 블렌딩)

  • Ju, Sang-Yoon;Jun, Cha-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.108-113
    • /
    • 1993
  • This paper proposes a method for obtaining blend surfaces between machining data of surfaces. This blending algorithm consists of trangation, detection, tracing, construction of blend surfaces, and generation of machining data for the blend surfaces. Inpus of the algorithm are a blend radius and machining data of surfaces to be blended. CL data as well as CC data can be applied as an input machining data of the algorithm.

  • PDF

Blending Precess Optimization using Fuzzy Set Theory an Neural Networks (퍼지 및 신경망을 이용한 Blending Process의 최적화)

  • 황인창;김정남;주관정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.488-492
    • /
    • 1993
  • This paper proposes a new approach to the optimization method of a blending process with neural network. The method is based on the error backpropagation learning algorithm for neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a system solver. A fuzzy membership function is used in parallel with the neural network to minimize the difference between measurement value and input value of neural network. As a result, we can guarantee the reliability and stability of blending process by the help of neural network and fuzzy membership function.

  • PDF

Stitcing for Panorama based on SURF and Multi-band Blending (SURF와 멀티밴드 블렌딩에 기반한 파노라마 스티칭)

  • Luo, Juan;Shin, Sung-Sik;Park, Hyun-Ju;Gwun, Ou-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.201-209
    • /
    • 2011
  • This paper suggests a panorama image stitching system which consists of an image matching algorithm: modified SURF (Speeded Up Robust Feature) and an image blending algorithm: multi-band blending. In this paper, first, Modified SURF is described and SURF is compared with SIFT (Scale Invariant Feature Transform), which also gives the reason why modified SURF is chosen instead of SIFT. Then, multi-band blending is described, Lastly, the structure of a panorama image stitching system is suggested and evaluated by experiments, which includes stitching quality test and time cost experiment. According to the experiments, the proposed system can make the stitching seam invisible and get a perfect panorama for large image data, In addition, it is faster than the sift based stitching system.

A Study on the Development of Brake Control Unit for Urban Transit (도시철도차량의 제동제어장치 개발에 관한 연구)

  • Lee, Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1244-1247
    • /
    • 2002
  • The blending brake is mixed brake system which is operated by electrical and mechanical brake simultaneously. Most of urban transit system is used with blending brake unit. In order to train is align at the stopping position. The blending brake shall be presicely operated to the train. Many parameters are influence on the train when train is stopped on presicion position by blending brake. It is considered such parameters as decceleration, variable load, jerk, friction cofficient, etc. Therefore, This paper consider the parameter and describes the blending control for standard EMU. The control algorithm of it is proposed and simulation of it carried out by using MATLAB. Also Electronic control unit is manufactured with micro procesor which is configured fot blending control and is verified by performance test.

  • PDF

Brake Force simulation of a High Speed Train Using a Dynamic Model (동적 모델에 의한 고속전철의 제동력 시뮬레이션)

  • Lee, Nam-Jin;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-53
    • /
    • 2002
  • The brake system of a high speed train has a crucial role for the safety of the train. To develop a safe brake system of the high speed train, it is necessary to understand the braking principle and phenomena of the total brake system and its subsystems. In this paper, we have suggested a mathematical model which includes car dynamics, interactions between cars, adhesive forces, brake blending algorithm, and the dynamics of each brake devices. Also, we have proposed a ready-time compensation algorithm of eddy-current brake system and a brake control logic on electric-pneumatic blending. A simulation study has shown the proposed models and algorithms are effective on the braking of the train.

Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method (파노라마 고속화 생성을 위한 3차원 회전각 전처리와 가중치 블랜딩 기법)

  • Cho, Myeongah;Kim, Junsik;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.235-245
    • /
    • 2018
  • Recently panoramic image overcomes camera limited viewing angle and offers wide viewing angle by stitching plenty of images. In this paper, we propose pre-processing and post-processing algorithm which makes speed and accuracy improvements when making panoramic images. In pre-processing, we can get camera sensor information and use three-dimensional rotation angle to find RoI(Region of Interest) image. Finding RoI images can reduce time when extracting feature point. In post-processing, we propose weighted minimal error boundary cut blending algorithm to improve accuracy. This paper explains our algorithm and shows experimental results comparing with existing algorithms.

Implementation of the Panoramic System Using Feature-Based Image Stitching (특징점 기반 이미지 스티칭을 이용한 파노라마 시스템 구현)

  • Choi, Jaehak;Lee, Yonghwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.61-65
    • /
    • 2017
  • Recently, the interest and research on 360 camera and 360 image production are expanding. In this paper, we describe the feature extraction algorithm, alignment and image blending that make up the feature-based stitching system. And it deals with the theory of representative algorithm at each stage. In addition, the feature-based stitching system was implemented using OPENCV library. As a result of the implementation, the brightness of the two images is different, and it feels a sense of heterogeneity in the resulting image. We will study the proper preprocessing to adjust the brightness value to improve the accuracy and seamlessness of the feature-based stitching system.

  • PDF