• Title/Summary/Keyword: Blend ratio

Search Result 322, Processing Time 0.029 seconds

The Properties of High Flowing Concrete with Fly Ash for CFT Structure (플라이 애쉬를 사용한 CFT 구조용 고유동콘크리트의 강도특성)

  • Ahn, Nam-Shik;Lim, Hong-Chul;Choi, Jae-Gon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.93-96
    • /
    • 2006
  • To investigate the properties of high flowing concrete with fly ash and crushed sand for CFT structure, many batches were performed by a trial-error method and the results were analyzed by SPSS software program. In the experiment W/B was set up as 0.25 and the variables were a substitution ratio of fly ash, a blend ratio of crushed sand and the ages of specimens (3, 7, 28 days). The results of this study are summarized as the follows; 1) The increase of the substitution ratio of fly ash, the decrease of dosage of SP and the increase of dosage of AEA due to very fine sphere particle of fly ash. 2) The increase of the blend ratio of crushed sand, the increase of dosage of S/a and water content related with viscosity. 3) Made the high flowing concrete, the increase S/a and the increase the water content.

  • PDF

Studies on the Physical Properties and Application of EPDM-Polymer Blends. Part 6. Physical Properties for EPDM-NR-SBR Blends (EPDM과 각종(各種) Polymer의 Blend에 의(依)한 성능변화(性能變化) 및 그 응용(應用)에 관(關)한 연구(硏究)(제6보(第6報)) EPDM과 Natural Rubber 및 Butadiene-Styrene Rubber의 Blend에 대(對)하여)

  • Kim, Joon-Soo
    • Elastomers and Composites
    • /
    • v.7 no.2
    • /
    • pp.183-192
    • /
    • 1972
  • As a series of tile studies of EPDM-Polymer blends, tile experiment are concentrated to the investigation of the physical properties of tile EPDM-NR-SBR blends. The results are shown as follows: 1. In blending, tensile strength decreased with increase in EPDM contents, especially the ratio of EPDM/NR-SBR is 75/25. 2. Elongation and tear strength were much influenced by blending, especially the ratio of EPDM/NR-SBR is 50/50. 3. Ozone resistance is much improved after blending. It was effective more than tile ratio of EPDM/NR-SBR is 25/75. 4. Aging resistance is much improved after blending. It was effective more than the ratio of EPDM/NR-SBR is 50/50. 5. Hardness increased with increase in EPDM contents and on the other hand, abrasion resistance decreased.

  • PDF

The Surface Properties of Blend Film of Natural Rubber and Graft Latex by Dipping Process (Dipping법에 의한 천연고무와 그라프트 라텍스 블렌드 필름의 표면특성)

  • Kim, Kong-Soo;Park, Jun-Ha;Eum, Ju-Song
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.990-997
    • /
    • 1994
  • The vulcanized NR and blend films were prepared with mixing of natural rubber latex (NRL) and methyl methacrylated grafted latex(MGL) with various additives by dipping process. It was investigated the basic properties of vulcanized NR films that is optimum condition of the mature time, swelling degree, cure time at $110^{\circ}C$, and measured the mechanical properties of tensile strength and elongation of its condition. In order to identify the surface structure and the slip properties of blend films contact angles and static and kinetic friction coefficient were measured. Contact angles were decreased with increment of blend ratio of MGL, and static and kinetic friction coefficient were decreased rapidly for the NR/MG and NR-d-MG films than for the NR films. From the results, NR/MG and NR-d-MG films has slip's reinforcement in skin contact surface with increased of blend ratio of MGL.

  • PDF

Studies on NBR/PVC polymer blend (part 2) (NBR/PVC의 polymer blend에 관(關)한 연구(硏究)(제2보(第2報)))

  • Huh, Dong-Sub;Lee, Jung-Keun
    • Elastomers and Composites
    • /
    • v.6 no.1
    • /
    • pp.71-81
    • /
    • 1971
  • The intention of this study is to investigate the properties of polymer blend, NBR/PVC vulcanizates and blending procedures such as roll-mixing temperatures and sequences for polymer blending of NBR and PVC(resin type). The results obtained are as follows: 1. The roll temperature applied for polymer blending is around $150^{\circ}C$. At this temperature region, the degradation of rubber stock, which may be caused by heat, can be minimized and mill processing in practical application in industries can also be facilitated. 2. It is obviously necessary that a small amount of plasticizers should be added to the stock for improving processibility of roll mixing and physical properties. 3. On roll-mixing sequence, it is more effective that PVC compounded with plasticizer is added to NBR milled on hot roll. 4. The vulcanizates of the blends with different degree of polymerization of PVC ale similar to one another in properties. 5. NBR/PVC(70/30) blends shows the better physical characters than eve,-made foreign latex blend except abrasion-resistance. 6. As PVC addition ratio is increased, the physical properties such as resistance to ozone, tear, heat and oil and tensile strength, modulus, hardness have also improved, on the other hand, tension set and rebound character decreased. 7. The curve of ultimate elongation have point of inflection at the ratio of $30\sim40$ part of PVC. 8. While CR is blended, the physical properties such as brittle point, rebound and resistance to oil in high temperature have improved. 9. Polymer blend of NBR and domestic PVC is applied for the industrial utility such as rubber sole and heel, electric wire cover and oil-resistant packing, coating and gasket, printing roll, film for food packing etc.

  • PDF

Preparation and Physical Properties of Blend Films of Natural Rubber and Chloroprene Rubber Latex (NR/CR 라텍스 블렌드 필름의 제조 및 물리적 특성)

  • Kim, Kong Soo;Park, Jun Ha;Eum, Ju Song
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.691-697
    • /
    • 1996
  • The NR films were prepared with mixing of natural rubber latex(NRL) with various additives, and NR/CR films were prepared by blend ratio of chloroprene rubber latex(CRL). The swelling degree and the mechanical properties of these films were measured according to the procure time. As a result, optimum condition were showed the swelling degree : 80~85%, precure time : 48~60hrs., and tensile strength was reduced but elongation was increased as increasing the blend ratio of CRL. On the mechanical properties of films prepared by different dipping process in these optimum condition, the tensile strength and tear strength of NR/CR films by one dipping process are better than NR-d-CR films by two dipping process. The surface of these films were observed with scanning electron microscopy(SEM). It was found that phase separation was occured as increasing the blend ratio of CRL.

  • PDF

Kinetics of Isothermal Crystallization in Poly(ethylene oxide) and Poly(styrene-co-acrylic acid)Blends (Poly(ethylene oxide)/Poly(styrene-co-acrylic acid) Blends의 등온 결정화 속도에 관한 연구)

  • Lee, Sang-Cheol;Lee, Mu-Seong;Jo, Won-Ho
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.151-155
    • /
    • 1991
  • The kinetics of isothermal crystallization in blends of poly(ethylene oxide) (PEO) and poly(styrene-co-acrylic acid) (SAA) has been examined as a function of the blend ratio, the copolymer composition, and the crystallization temperature, based on the Avrami eauation. The Avrami exponents were mostly chose to 2, independent of the crystallization temperature. The crystallization rate of PEO in PEO/SAA blends decreased with the increase of SAA content. And also, the higher the acrylic acid content in the SAA copolymer, 7he slower the crystallization rate of PEO in the blends.

  • PDF

Studies on the Physical and Thermal Properties of the Chitosan/Gelatin Blend (키토산/젤라틴 블랜드 폴리머의 물리적 및 열적 특성에 대한 연구)

  • Kim, Byung-Ho;Park, Jang-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • To mass-produce useful biopolymer films, chitosan/gelatin blend films were prepared by solution casting method. Effects of mixing ratio, tensile strength (TS), elongation (E) at break, total color difference (${\Dalta}E$), opacity, water vapor permeability (WVP), oxygen permeability (OP), and thermal properties on chitosan/gelatin blend films properties were investigated. TS, E, ${\Dalta}E$, opacity, WVP, and OP values were 58.24-22.01 MPa, 13.11-24.67%, 1.86-17.45, 0.3104-1.2161 nmO.D./${\mu}m$, $1.6875-1.7225ng{\cdot}m/m^{2}{\cdot}s{\cdot}Pa$, and $2.2380{\times}10^{-7}-2.2975{\times}10^{-7}\;mL{\cdot}{\mu}m/m^{2}{\cdot}s{\cdot}Pa$, respectively. TS of blend films decreased, while E, ${\Dalta}E$, and opacity increased with increasing chitosan content. WVP of blend films did not show any significant relationship with mixing ratio and thickness of blend films. Miscibility of films was examined over entire composition range by thermogravimetric analyzer (TGA) and dynamic mechanical analyzer (DMA). TGA results showed gelatin is more thermally stable than chitosan and some interactions among functional groups of two biopolymers. Glass transition temperature $(T_{2})$ of films as determined by DMA decreased with increasing content of chitosan in the blend. Results of thermal analysis indicate high miscibility among polymer components in the blend.

Use of Response Surface Methodology for Optimization of Clarified Mixed Apple and Carrot Juice Production (반응표면 분석을 이용한 사과.당근 혼합주스의 청징공정 최적화)

  • Seog, Eun-Ju;Lee, Jun-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.1051-1056
    • /
    • 2006
  • Response surface methodology was used to investigate the quality of clarified mixed apple and carrot juices using ultrafitration. Apple and carrot juices were blended at the ratio of 1:3, 1:1, and 3:1. A three-variable, three-level central composite design was employed where the independent variables were the blend ratio, temperature and average transmembrane pressure (ATP). With increasing temperature and pressure, flux linearly increased regardless of blending ratio. Blend juice with 75% apple showed the highest soluble sugar and total sugar content in apple and carrot blend juices. Soluble solid contents were more affected by blending ratio than temperature and ATP. Total sugar contents were greatly affected by temperature; increasing temperature led to higher total sugar content up to $25^{\circ}C$. Higher carrot ratio led to higher vitamin C content. In general, higher acidity was achieved by higher apple content and acidity was increased with increasing temperature. Turbidity increased for all samples as APT increased, with the blending ratio of 1:1 (apple:carrot) showing the highest turbidity. Viscosity was greatly changed in the blending ratio of 3:1 (apple:carrot) juice. The polynomial models developed by RSM were satisfactory to describe the relationships between the studied factors and the responses. Analytical optimization gave $flux=0.216\;L/m^2.h$, soluble $solids=10.39^{\circ}Brix$, total sugar=71.32 mg/mL, vitamin C=315.18 mg%, acidity=7.78 mL, turbidity=0.017, and viscosity=1.44 cp, when using a $temperature=44.97^{\circ}C$, ATP=113.57 kPa, and blend ratio=28.50%.

A Study on the One Bath One Step Thermosol Dyeing of Polyester/Cotton Blended Fabrics (폴리에스터/면 혼방직물의 1욕 1단 서모졸 염색에 관한 연구)

  • Ro, Duck-Kil
    • Textile Coloration and Finishing
    • /
    • v.20 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • In this study the effects of swelling and fixing agent for the cotton side of polyester/cotton blended fabrics and the thermosol temperature on the dyeing properties and fastness. were investigated, when the polyester/cotton blended fabrics were dyed with a disperse dye which was able to dye both side of fiber by one bath one step thermosol process. The obtained results are as follows; The dye adsorption decreased with the increase of cotton blend ratio in polyester/cotton blended fabrics, when the ratio of swelling and fixing agent for cotton side was constant. As the thermosol temperature increased up to $210^{\circ}C$, the dye adsorption were increased, but that effect was less significant when the cotton blend ratio was higher.

Preparation and physical properties of biodegradable polybutylene succinate/polybutylene adipate-co-terephthalate blend monofilament by melt spinning (용융방사에 의한 생분해성 PBS/PBAT 블랜드 모노 필라멘트 제조 및 물리적 특성)

  • Park, Seong-Wook;Kim, Seong-Hun;Choi, Hea-Sun;Cho, Hyun-Hok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.3
    • /
    • pp.257-264
    • /
    • 2010
  • In order to improve the breaking strength and elongation of Polybutylene succinate (PBS) monofilament, the monofilament was produced by blending PBS and Polybutlyne adipate-co-terephthalate (PBAT). The PBS/PBAT blend monofilament was prepared by the melt spinning system, and the weight ratios of the compositions of PBS/PBAT was 100/0, 95/5, 90/10 and 85/15, respectively. The breaking strength, elongation, softness and crystallization of PBS/PBAT blend monofilament were analyzed by using a tensionmeter, softness measurement, X-ray diffractometer in the both dry and wet conditions. The PBS/PBAT blend monofilaments were spun in the take-up velocity of 1.19m/sec under the drawing ratio of 6.8:1 condition. The production volumes of PBS/PBAT blend monofilaments showed 20% less than that of Nylon. The breaking strength of PBS/PBAT blend monofilaments were decreased as PBAT contents increased, while elongation and softness were increased. In case of PBAT content were over 5%, the breaking strength, elongation and softness of PBS/PBAT blend monofilaments were not shown to increase in spite of increasing in PBAT contents. Based on these results, it was possible to make the monofilaments with the maximized physical properties when the PBAT contents at 5%.