• Title/Summary/Keyword: Bleached

Search Result 289, Processing Time 0.031 seconds

Reinforcing Efficiencies of Two Different Cellulose Nanocrystals in Polyvinyl Alcohol-Based Nanocomposites

  • Park, Byung-Dae;Causin, Valerio
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.4
    • /
    • pp.250-255
    • /
    • 2013
  • As a renewable nanomaterial, cellulose nanocrystal (CNC) isolated from wood grants excellent mechanical properties in developing high performance nanocomposites. This study was undertaken to compare the reinforcing efficiency of two different CNCs, i.e., cellulose nanowhiskers (CNWs) and cellulose nanofibrils (CNFs) from hardwood bleached kraft pulp (HW-BKP) as reinforcing agent in polyvinyl alcohol (PVA)-based nanocomposite. The CNWs were isolated by sulfuric acid hydrolysis while the CNFs were isolated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. Based on measurements using transmission electron microscopy, the individual CNWs were about $6.96{\pm}0.87nm$ wide and $178{\pm}55nm$ long, while CNFs were $7.07{\pm}0.99nm$ wide. The incorporation of CNWs and CNFs into the PVA matrix at 5% and 1% levels, respectively, resulted in the maximum tensile strength, indicating different efficiencies of these CNCs in the nanocomposites. Therefore, these results suggest a relationship between the reinforcing potential of CNCs and their physical characteristics, such as their morphology, dimensions, and aspect ratio.

Studies on the Bleaching Efficiency in Newsprint Using Formamidine Sulfinic Acid

  • Choi, Won-Jung;Kim, Hyoung-Jin
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.381-386
    • /
    • 2006
  • Many different types of bleaching chemicals and processes have been globally used for deinked pulp. Besides chlorine-free bleaching chemicals, hydrogen peroxide, and sodium dithionite that could be used without restriction for almost all types of fibers, chlorine-containing chemicals such as chlorine dioxide and sodium hypochlorite have also used throughout the world. Even though hydrogen peroxide is commonly used in newsprint, it could not effectively increase brightness. Experimental evaluation on the possibility of using formamidine sulfinic acid (FAS), a reducing agent, for bleaching a wood-containing deinked pulp has been carried out in this study. The effect of bleaching efficiency for FAS on operational conditions and chemical concentrations compaired to hydrogen peroxide in one and two stages was studied. FAS bleaching showed higher brightness at high temperature and low consistency, and vice versa for peroxide one. Bleaching with sodium silicate and DTPA in FAS and peroxide stage showed better results than cases without them. Sodium silicate and chelant seemed minimize the influence of transition metal ions, including manganese and iron ions, which induce both bleaching agents to decompose. As a result, FAS as a reducing agent seems more effective than hydrogen peroxide for increasing brightness and reducing yellowness. FAS and FAS sequence seemed more efficient than the other two stages of bleaching sequences with regard to the best brightness level obtained. When bleaching was conducted with FAS, COD load was just about one-third compared to peroxide, and brightness stability of the bleached pulp appeared better than peroxide after UV light irradiation.

  • PDF

Pulp Bleaching Effect and Ionization Rate of Chlorine Dioxide by Additives and Various pH Conditions(I)-Ionization of ClO$_2$ and Formation of Chlorate in Pulp Bleaching- (pH와 첨가제에 의한 이산화염소의 분해율 및 펄프표백 효과(1)-표백 중에서 이산화염소의 분해와 Chlorate의 생성-)

  • ;Li Jun Wang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.1-6
    • /
    • 1998
  • Elementally Chlorine Free (ECF) bleaching will be superior than Totally Chlorine free (TCF) bleaching, not only because they have no significant difference in effluent toxicity, but also those pulps bleached by ECF have higher brightness, strength, yield, etc., over those by TCF. With this belief, this paper focused on the chemistry of chlorine dioxide decomposition and ionization, both in water solution and in pulp slurry. Special attention was paid to chlorate ion because there have been controversies as how it is formed and what its behavior to the end pH of pulp bleaching is. As a result, during ionization of chlorine dioxide with water, both chlorate and chlorite were found to increase with increasing pH, but during ionization with pulp, chlorite was found to increase with end pH while chlorate decreased with increasing end pH. In the case of ionization with water, the disproportion equation $2CIO_2 + OH^{-} \lightarrow H_2O + CIO_3^{-} + CIO_2^{-}$ was thought to become the main reaction with the increasing pH, while in the case of ionization with pulp, the reaction $HCIO + CIO_2^{-}\lightarow H^{+} + Cl^{-} + CIO_3^{-}$ was the main reaction contributing to the formation of chlorate. Based on this above opinion, the contrary results of chlorine dioxide ionization from different researchers were discussed and explained.

  • PDF

Properties of Bleachability of Paper Mulberry Pulp by Hydrogen Peroxide and Ultrasonication Bleaching System (과산화수소와 초음파 표백 시스템에 따른 닥나무 펄프의 표백 효율 특성)

  • Seo, Jin-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.1
    • /
    • pp.65-73
    • /
    • 2012
  • Nowadays, the concern on the environmental load of bleaching process gave rise to the process of ECF(elemental chlorine free) and TCF(total clorine free). These sequences are based on oxygen-derived compounds such as oxygen, ozone, and hydrogen peroxide which is used as a typical eco-friendly bleaching agent. In this study, paper mulberry pulp was bleached with hydrogen peroxide and some bleaching process were accompanied with ultrasonication in order to increase the bleaching efficiency. The best bleaching efficiency of paper mulberry pulp was obtained in the condition of hydrogen peroxide and ultrasonication(20 kHz) bleaching system at $45^{\circ}C$ for 30 min. The brightness and kappa number of paper mulberry pulp were gained to 5.09% and 3.52 respectively. and yield was slightly loosed to 2%. Therefore, the efficiency of hydrogen peroxide and ultrasonication bleaching system of paper mulberry pulp was superior to the conventional hydrogen peroxide bleaching system. Magnesium sulfate acted as a bleaching stabilizer for the increasement of yield. As a result, the yield and viscosity were increased to 2.2% and 12% respectively.

Changes in Fiber Characteristics by Low Concentration Sodium Hydroxide Swelling and Beating (저농도 NaOH 팽윤과 고해에 따른 섬유특성 변화)

  • Kim, Ah-Ram;Choi, Kyoung-Hwa;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.65-72
    • /
    • 2014
  • In this study, effects of alkali swelling at low concentration below 2 percent on properties of hardwood bleached kraft pulp (HwBKP) were elucidated. Swelling treatment of HwBKP was performed at various NaOH concentrations with/without beating. Then, the swelling characteristics of pulp fiber was evaluated by measuring the solvent retention values such as water retention value (WRV) and isopropyl alcohol retention value (LRV). It was found that fiber characteristics were influenced by NaOH swelling even at low alkali concentration and beating treatment as well. The values of WRV and LRV were decreased when the alkali concentration was increased. It is the result from the decreased acidic groups of pulp which were formed during beating. The acidic groups could be neutralized and then removed by alkali. The difference between WRV and LRV was decreased with increasing alkali concentration while the difference was increased when the alkali swollen pulp was beaten. In addition, the crystalline structure of HwBKP was almost not changed while the crystallinity was influenced by swelling treatment at a low alkali concentration.

Preparation and Characterization of Cellulose Nanofibril/Polyvinyl Alcohol Composite Nanofibers by Electrospinning

  • Park, Byung-Dae;Um, In Chul;Lee, Sun-Young;Dufresne, Alain
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.119-129
    • /
    • 2014
  • This work undertook to prepare nanofibers of cellulose nanofibrils (CNF)/polyvinyl alcohol (PVA) composite by electrospinning, and characterize the electrospun composite nanofibers. Different contents of CNFs isolated from hardwood bleached kraft pulp (HW-BKP) by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation were suspended in aqueous polyvinyl alcohol (PVA) solution, and then electrospun into CNF/PVA composite nanofibers. The morphology and dimension of CNFs were characterized by transmission electron microscopy (TEM), which revealed that CNFs were fibrillated form with the diameter of about $7.07{\pm}0.99$ nm. Morphology of the electrospun nanofiber observed by field-emission scanning electron microscopy (FE-SEM) showed that uniform CNF/PVA composite nanofibers were manufactured at 1~3% CNF contents while many beads were observed at 5% CNF level. Both the viscosity of CNF/PVA solution and diameter of the electrospun nanofiber decreased with an increase in CNF content. The diameter and its distribution of the electrospun nanofibers helped explain the differences observed in their morphology. These results show that the electrospinning method was successful in preparing uniform CNF/PVA nanofibers, indicating a great potential for manufacturing consistent and reliable cellulose-based nanofibrils for scaffolds in future applications.

Instrumental Analysis of the Human Hair Damaged by Bleaching Treatments - Focused on ATR FT-IRM -

  • Ha, Byung-Jo
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.23-33
    • /
    • 2008
  • The physico-chemical characteristics by bleaching treatments were assessed by several instrumental analyses such as surface morphology, chemical structural change, color change as well as tensile strength. The change of morphological characteristic was observed through scanning electron microscope(SEM). The observation of the fine structure on hair surface by SEM showed the bleached hair had much damaged to hair cuticle, and some of cuticle surface were worn away. To investigate the chemical structural changes in hair keratin, the cross-sections of hair samples were directly analysed using Fourier transform infrared microspectroscopy(FT-IRM). The results showed the cysteic acid S=O band intensity was distinctively increased by performing the bleaching treatment. The cleavage of cystine was appeared to proceed primarily through the sulfur-sulfur (-S-S-) fission whereby cysteic acid was formed as a principal oxidation products. The distribution of amide I band in hair keratin was determined by attenuated total reflectance(ATR) FT-IR mapping image. The results showed that the outer side of hair cortex was more damaged than the inner side of the hair cortex. Also, during chemical bleaching of the hair with alkaline peroxide, the hair was turned to reddish yellow due to the oxidative degradation of eumelanin. This means the eumelanin is more unstable than pheomelanin in chemical oxidation. With bleaching, the tensile strength was also reduced as a results of the chemical oxidation.

Physical Properties of Human Hair by the Bleach (탈색시술 조건에 따른 모발의 물성변화)

  • Yun, Jong-Hyun;Kim, Ho-Jung;Lee, Young-Joo;Park, Cha-Cheol
    • Fashion & Textile Research Journal
    • /
    • v.7 no.1
    • /
    • pp.96-100
    • /
    • 2005
  • The bleaching is one of the worst factors which leads to the damage of the human hair. The cuticle of the human hair is injured by the alkali that is one of the chief ingredients of a bleaching agent. The alkali component of the bleaching solution chemically reacts with human hair, reducing the tenacity and dissolving the cuticle layer. The purpose of this study is to examine the effects of bleaching time and temperature on the physical properties and morphology. The results were as follows. 1. The stress-strain curves for human hair indicated the three distinct regions, such as Hookean region, Yield region and post-Yield region. The tenacity of hair is reduced gradually with an increase of bleaching time. Under these same conditions, elongation of the hair increased. 2. The greatest drop in tenacity for hair occured between $40^{\circ}C$ and $60^{\circ}C$ of bleaching temperature. 3. Compared with the virgin hair, bleached hair showed a slower rate of weight reduction in the TGA thermogram. The rate decreased gradually as the bleaching time and temperature increased. 4. As the bleaching conditions reached time and temperature extremes, the human hair cuticle became more damaged. The cuticle layers seemed to have dissolved, as seen in the SEM photographs.

KINETICS OF POLYELECTROLYTE ADSORPTION ON CELLULOSIC FIBRES

  • Lars Wagberg;Sjolund, Anna-Karin
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.34-42
    • /
    • 1999
  • The present investigation has focused up on the study of the adsorption of three different molecular mass fractions of a polyDiMethylDiAllylAmmoniumChloride (DMDAAC) (8750(LM\ulcorner), 48000(MM\ulcorner) and 1200000(HM\ulcorner)) on bleached chemical fibres. Both kinetics of adsorption and equilibrium adsorption measurements have been conducted and each adsorption has been measured by polyelectrolyte titration. The results show that the LM\ulcorner polymer can reach all of the charges in the fibre wall whereas the MM\ulcorner and HM\ulcorner can only reach the external surfaces of the fibres. It is also shown that the kinetics of adsorption of the LMw polymer is not at all affected by the presence of a saturated layer of HMw polymer on the surface of the fibres. Finally, the results from the investigation show that it is possible to have full coverage of the external surface of the fibres by a high molecular mass polymer and a full coverage of the internal surface of the fibres with a low molecular mass polymer. This is true if the high molecular masspolymer is added first followed by addition of the low molecular masspolymer.

Effect of Beating and Pressing on Fracture Toughness of Paper (고해와 압착처리가 종이의 파괴인성에 미치는 영향)

  • 윤혜정;신동소
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.4
    • /
    • pp.1-9
    • /
    • 2000
  • As the speed of the paper machine and printing press increases, the dependency of the production efficiency upon the frequency of web break increases. It is believed that flaw or crack that presents in paper is one of the most important for web break. Runnability of papers on the paper machine could be evaluated by measuring fracture toughness. In this paper the effect kof beating and pressing on the runnability was investigated using handsheets made from softwood bleached kraft pulp beaten to different freeness. Pressing pressure was also varied to obtain different levels of sheet consolidation. Density, tensile strength, and J-integral of the handsheets were evaluated. For measuring J-integral either a single specimen method or RPM method was employed. Results showed that the density and tensile strength were improved as beating and pressing increased because of increased interfiber bonding. J-integral increased with beating until the CSF reached 400mL. No significant difference in J-integral, however, was observed afterward with the increase of beating. And it appeared to be due to acceleration of the stress concentration around the crack that exists on the fiber wall of the sheet when cracks exists.

  • PDF