• Title/Summary/Keyword: Blastocyst formation

Search Result 278, Processing Time 0.026 seconds

A Comparative Study on the Parthenogenetic Development of Pig Oocytes Cultured in North Carolina State University-23 and Porcine Zygote Medium-3

  • Lee, Joo-Hyeong;Hyun, Sang-Hwan;Lee, Eun-Song
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • The objective of this study was to examine the effect of in vitro culture media on embryonic development of in vitro-matured (IVM) oocytes after parthenogenetic activation (PA) in pigs. Immature pig oocytes were matured in TCM-199 supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones for the first 22 h and then further cultured in hormone-free medium for an additional 22~26 h. IVM oocytes were activated by electric pulses and cultured in porcine zygote medium-3 (PZM-3) and North Carolina State University-23 supplemented with essential and non-essential amino acids (NCSU-23aa). These media were further modified by supplementing 2.77 mM myo-inositol, 0.34 mM trisodium citrate, and $10{\mu}M$ ${\beta}$-mercaptoethanol (designated as mPZM-3 and mNCSU-23aa, respectively). Culture of PA embryos in mPZM-3 significantly increased development to the blastocyst stage than culture in NCSU-23aa (36.2% vs. 24.8%, p<0.05). Modified PZM-3 showed a significantly higher blastocyst formation than NCSU-23aa in both groups of embryos that were activated at 44 h and 48 h of IVM (51.0% vs. 35.5% and 49.0% vs. 34.2% in oocytes activated at 44 h and 48 h of IVM, respectively). Irrespective of the follicle diameter where oocytes were collected, embryonic development to the blastocyst stage was increased (p<0.05) by the culture in mPZM-3 compared to culture in NCSU-23aa (25.9% vs. 34.2% and 32.9% vs. 44.8% in embryos derived from small and medium size follicles, respectively). Our results demonstrated that culture media had significant effect on preimplantation development PA embryos and that mPZM-3 was superior to mNCSU-23 in supporting development to the blastocyst stage in pigs. This beneficial effect of mPZM-3 on embryonic development was not impaired by other factors such as time of oocyte activation and origin of immature oocytes (small and medium size follicles).

Expression of Apoptotic Genes in Mouse Preimplantation Embryo Development (착상전 생쥐 배아 발달에 대한 Apoptotic Gene의 발현)

  • Lee, Yu-Il;Lee, Jin;Kim, Mi-Young;Chun, Sang-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.1
    • /
    • pp.77-84
    • /
    • 2003
  • Objective : The aim of this study was to evaluate the influence of three different media on preimplatation embryo development and the expression of Bcl-2, Mcl-1, Bax, and Bok in mouse. Materials and Methods: Two-cell embryos were retrieved from ICR female mice (4 weeks old) at 48 hr after hCG injection and cultured in Ham's F-10, HTF, and G1.2 media. The developmental rate of 2-cell embryos was evaluated from 24 hr to 72 hr after culture. RT-PCR was performed for the detection of Bcl-2, Mcl-1, Bax, and Bok gene expression. Results: The rates of morula and blastocyst in HTF and G1.2 media (88%, 98.1%) were significantly higher than those in Ham's F-10 media (39.6%) at 48 hr. Likewise, the rates of hatching and hatched blastocyst in HTF and G1.2 media (21.9%, 52.9%) were higher than those in Ham's F-10 media (3.5%) at 72 hr. Bcl-2 and Bax mRNAs were highly detected in embryos cultured in Ham's F-10 when compared in embryos cultured in HTF and G1.2. In contrast, the expression of Mcl-1 and Bok was not significantly different. Conclusion: These results show that HTF and G1.2 culture media increase the rate of blastocyst formation and stimulate Bcl-2 and Bax gene expression in mouse preimplantation embryos.

Endoplasmic Reticulum (ER) Stress Inhibitor or Antioxidant Treatments during Micromanipulation Can Inhibit Both ER and Oxidative Stresses in Porcine SCNT Embryos

  • Park, Hye-Bin;Park, Yeo-Reum;Kim, Mi-Jeong;Jung, Bae-Dong;Park, Choon-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.24 no.1
    • /
    • pp.31-41
    • /
    • 2020
  • We investigated the effects of endoplasmic reticulum (ER) stress inhibitor and antioxidant treatments during the micromanipulation of somatic cell nuclear transfer (SCNT) on in vitro development of SCNT embryos. Tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor and vitamin C (Vit. C), an antioxidant, were treated by alone or in combination, then, the level of X-box binding protein 1 (Xbp1) splicing and the expressions of ER stress-associated genes, oxidative stress-related genes, and apoptotic genes were confirmed in the 1-cell and blastocyst stages. In the 1-cell stage, the levels of Xbp1 splicing were significantly decreased in TUDCA and Vit. C treatment groups compared to the control (p<0.05). In addition, the expression levels of most ER stress-associated genes and oxidative stress-related genes were significantly lower in all treatment groups than the control (p<0.05), and the transcript levels of apoptotic genes were also significantly lower in all treatment groups than the control (p<0.05). In the blastocyst stage, decreased expression of ER stress-, oxidative stress-, and apoptosis-related genes were observed only in some treatments. However, the blastocyst formation rates in TUDCA and Vit. C treatment groups (24.8% and 22.0%, respectively) and mean blastocyst cell number in all treatment groups (59.7±4.3 to 63.5±3.3) were significantly higher (p<0.05) than those of control. The results showed that the TUDCA or Vit. C treatment during micromanipulation inhibited both ER and oxidative stresses in the early stage of SCNT embryos, thereby reducing cell damage and promoting in vitro development.

Effects of dynamic oxygen concentrations on the development of mouse pre- and peri-implantation embryos using a double-channel gas supply incubator system

  • Lee, Seung-Chan;Seo, Ho-Chul;Lee, Jaewang;Jun, Jin Hyun;Choi, Kyoo Wan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.4
    • /
    • pp.189-196
    • /
    • 2019
  • Objective: We aimed to evaluate the effects of different oxygen conditions (20% [high O2], 5% [low O2] and 5% decreased to 2% [dynamic O2]) on mouse pre- and peri-implantation development using a novel double-channel gas supply (DCGS) incubator (CNC Biotech Inc.) to alter the oxygen concentration during in vitro culture. Methods: The high-O2 and low-O2 groups were cultured from the one-cell to the blastocyst stage under 20% and 5% oxygen concentrations, respectively. In the dynamic-O2 group, mouse embryos were cultured from the one-cell to the morula stage under 5% O2 for 3 days, followed by culture under 2% O2 to the blastocyst stage. To evaluate peri-implantation development, the blastocysts from the three groups were individually transferred to a fibronectin-coated dish and cultured to the outgrowth stage in droplets. Results: The blastocyst formation rate was significantly higher in the low-O2 and dynamic-O2 groups than in the high-O2 group. The total cell number was significantly higher in the dynamic-O2 group than in the low-O2 and high-O2 groups. Additionally, the apoptotic index was significantly lower in the low-O2 and dynamic-O2 groups than in the high-O2 group. The trophoblast outgrowth rate and spread area were significantly higher in the low-O2 and dynamic-O2 groups than in the high-O2 group. Conclusion: Our results showed that a dynamic oxygen concentration (decreasing from 5% to 2%) had beneficial effects on mouse pre- and peri-implantation development. Optimized, dynamic changing of oxygen concentrations using the novel DCGS incubator could improve the developmental competence of in vitro cultured embryos in a human in vitro fertilization and embryo transfer program.

Effects of biological Factors on In Vitro Production of Hanwoo Embryos (한우 난포란 유래 배반포의 체외생산을 위한 생물학적 요인들의 영향)

  • 박흠대;김재영;주재홍;공건오;윤산현;공일근;이상민;이상진;송해범
    • Journal of Embryo Transfer
    • /
    • v.15 no.2
    • /
    • pp.129-136
    • /
    • 2000
  • This study was carried out to investigate the effect of biological factors on the in vitro production(IVP) of bovine oocytes for development of simple culture methods and medium. Oocytes from the slaughterhouse ovaries were matured and fertilized using general protocol and this study was examined if there were necessary to co-culture, media change, media type and embryo density. This results were as follows: 1. The development rate according to co-culture with cumulus cells and non co-culture as drop culture was not significantly different in cleavage (68.9 vs 71.7%), 8-cell stage (41.2 vs 44.1%) and blastocyst stage (12.2 vs 13.8%), respectively (p<0.05) 2. The blastocyst development rates in YS and CRIaa were higher than that in TCM199 (12.4, 10.4$ vs 3.7%), but the cleavage (69.0, 77.8 and 61.0%) and 8-cell stage (31.7, 37.0 and 35.7%) development accoring to YS, TCM199 and CRIaa ws not significantly different, respectively (p<0.05). 3. There was no significantly different in cleavage (62.6, 59.5 and 61.2%), 8-cell(34.7, 37.9 and 34.0%) and blastocyst (9.5, 11.6 and 12.8%) development among medium change time as control, Group I and Group II, respectively (p<0.05). 4. Blastocyst formation of 8-cell stage according to embryo density was not significantly different in 1, 10 and 25 embryos (27.3, 22.5 and 34.0%), respectively (p<0.05). These results indicated that simple culture system could reduce bovine IVP embryos as drop culture as non co-culture system, high density embryo (25 embryos/50 $\mu$1 drop). YS defined medium and no medium change for whole culture period, although other biological factors need to examine in order to produce efficient IVP bovine embryos.

  • PDF

Effects of Endoplasmic Reticulum Stress Inhibitor Treatment during the Micromanipulation of Somatic Cell Nuclear Transfer in Porcine Oocytes

  • Park, Yeo-Reum;Park, Hye-Bin;Kim, Mi-Jeong;Jung, Bae-Dong;Lee, Seunghyung;Park, Choon-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.23 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • We examined the effects of endoplasmic reticulum (ER) stress inhibitor treatment during the micromanipulation of porcine somatic cell nuclear transfer (SCNT) on the in vitro development of SCNT embryos. ER stress inhibitors such as salubrinal (200 nM) and tauroursodeoxycholic acid (TUDCA; $100{\mu}M$) were added to the micromanipulation medium and holding medium. The expression of X-box binding protein 1 (Xbp1), ER-stress-associated genes, and apoptotic genes in SCNT embryos was confirmed at the one-cell and blastocyst stages. Levels of Xbp1 splicing and expression of ER-stress-associated genes in SCNT embryos at the one-cell stage decreased significantly with TUDCA treatment (p<0.05). The expression of ER-stress-associated genes also decreased slightly with the addition of both salubrinal and TUDCA (Sal+TUD). The expression levels of caspase-3 and Bcl2-associated X protein (Bax) mRNA were also significantly lower in the TUDCA and Sal+TUD treatments (p<0.05). At the blastocyst stage, there were no differences in levels of Xbp1 splicing, and transcription of ER-stress-associated genes and apoptosis genes between control and treatment groups. However, the blastocyst formation rate (20.2%) and mean blastocyst cell number ($63.0{\pm}7.2$) were significantly higher (p<0.05) for embryos in the TUDCA treatment compared with those for control (12.6% and $41.7{\pm}3.1$, respectively). These results indicate that the addition of ER-stress inhibitors, especially TUDCA, during micromanipulation can inhibit cellular damage and enhance in vitro development of SCNT embryos by reducing stress levels in the ER.

Effects of astaxanthin supplementation in fertilization medium and/or culture medium on the fertilization and development of mouse oocytes

  • Tana, Chonthicha;Somsak, Pareeya;Piromlertamorn, Waraporn;Sanmee, Usanee
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.1
    • /
    • pp.26-32
    • /
    • 2022
  • Objective: We investigated the effect of supplementing fertilization medium and/or culture medium with astaxanthin (AST) on the two phases of in vitro fertilization: gamete fertilization and embryo development. Methods: Mouse cumulus-oocyte complexes were divided into four groups with 5 µM AST added to the fertilization medium (group 3, n=300), culture medium (group 2, n=300), or both media (group 4, n=290). No AST was added to the control group (group 1, n=300). Results: The fertilization rate was significantly higher (p<0.001) in the groups using AST supplemented fertilization medium (group 3, 79.0%; group 4, 81.4%) than those without AST (group 1, 56.3%; group 2, 52.3%). The blastocyst rate calculated from the two-cell stage was significantly lower (p<0.001) in the groups using AST-supplemented embryo culture medium (group 2, 58.0%; group 4, 62.3%) than in those without AST (group 1, 82.8%; group 3, 79.8%). The blastocyst rate calculated from the number of inseminated oocytes was highest in group 3 (189/300, 63.0%) and lowest in group 2 (91/300, 30.3%) with statistical significance compared to other groups (p<0.001). There were significantly higher numbers of cells in the inner cell mass and trophectoderm, as well as significantly higher total blastocyst cell counts, in group 3 than in the control group. Conclusion: An increased blastocyst formation rate and high-quality blastocysts were found only in the fertilization medium that had been supplemented with AST. In contrast, AST supplementation of the embryo culture medium was found to impair embryo development.

Comparison on Vitrification of Mouse Oocytes and Embryos Using Closed Pulled Straws (CPS), Conventional Straws and Open Pulled Straws (OPS) (CPS, 기존 Straws, OPS 방법을 이용한 마우스 성숙난자 및 수정란의 유리화 동결 비교)

  • Seok H.B.
    • Journal of Embryo Transfer
    • /
    • v.21 no.1
    • /
    • pp.53-58
    • /
    • 2006
  • This study was conducted to comparing on vitrification of mouse oocytes and embryos using CPS, conventional straws and CPS by evaluating in morphological survival for oocytes, and embryonic cleavages and blastocyst formation for embryos. The morphological survival in vitro after thawing of vitrified oocytes using CPS (75%) and conventional straws (72%) were significantly higher (p<0.05) than that using OPS (68%). The blastocyst formation rates of vitrified embryos using CPS (48.6%) and unfrozen control embryos (56.0%) were significantly higher (p<0.05) than those of conventional straws (43.4%) and OPS (37.7%). The rates of morula formation were also higher to control, CPS, conventional straws and OPS in orderly. These results show that CPS has the advantages of achieving a high survival and safety preservation.

Parthenogenetic Activation of Porcine Oocytes and Isolation of Embryonic Stem Cells-like Derived from Parthenogenetic Blastocysts

  • Xu, X.M.;Hua, J.L.;Jia, W.W.;Huang, W.;Yang, C.R.;Dou, Z.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.10
    • /
    • pp.1510-1516
    • /
    • 2007
  • These experiments were carried out to optimize the parameters of electrical activation, methods of parthenogenetic activation and embryo culture in vitro and meanwhile to isolate embryonic stem cells-like (ESCs) derived from porcine parthenogenetic blastocysts (pPBs). These results showed that, as the electric field strength increased from 1.0 to 2.7 kV/cm, the cleavage rate of parthenogenetic embryos increased gradually but the rate of oocyte lysis was significantly increased when using 2.7 kV/cm field strength. The rate of cleavage in 2.2 and 2.7 kV/cm groups was significantly increased in comparison with that of the 1.0 kV/cm group. A voltage field strength of 2.2 kV/cm DC was used to investigate blastocyst development following activation with a single pulse of 30 or $60-{\mu}sec$ pulse duration. The optimum pulse duration was 30-${\mu}sec$, with a blastocyst rate of 20.7%. Multiple pulses were inferior to a single pulse for blastocyst yield (8.0% vs. 29.9) (p<0.05). For porcine oocyte parthenogenetic activation methods, the rates of cleavage (79.0% vs. 59.8%) and blastocysts (19.4% vs. 3.4%) were significantly increased in electrical activation in contrast to chemical activation with ionomycin/6-DMAP (p<0.05). Rates of cleavage and blastocyst formation in NCSU-23 and PZM-3 embryo media were higher than those of G1.3/G2.3 serial culture media, but there was no significant difference among the three groups. The total cell number of blastocysts in PZM-3 embryo culture media containing $5{\mu}g/ml$ insulin was significantly higher than that of the control (no insulin) ($44.3{\pm}9.1$ vs. $33.9{\pm}11.7$). For isolation of PESCs-like, the rates of porcine blastocysts attached to feeder layers and ICM colony formation in Method B (nude embryo culture) were better than those in Method A (intact embryo culture).

Survival and In Vitro Development of Immature Bovine Oocytes Cryopreserved by Vitrification

  • Yang, Byoung-Chul;Im, Gi-Sun;Chang, Won-Kyong;Lee, Yun-Keun;Oh, Sung-Jong;Jin, Dong-Il;Im, Kyong-Sun;Lee, Chang-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.23-28
    • /
    • 2003
  • The present study was undertaken to investigate the effects of PVP concentration and exposure temperature to vitrification solution on the post-thaw survival, in vitro maturation and development of immature bovine oocytes (germinal vesicle stage). The vitrification solution (VS) consisted of 40% ethylene glycol (EG)+0.5 M sucrose (S)+10% FBS. PVP was added to VS: 0%, 5% or 10%. The cumulus-oocyte complexes (COCs) were diluted in VS as one step, after 2 min the COCs were loaded in straw and vitrified by direct immersion into liquid nitrogen. For thawing, the straws were plunged into $30^{\circ}C$ water bath for 10s. After thawing, the oocytes were diluted in 0.5 M (in DPBS with 10% FBS) sucrose solution for 5 min. The survival rate (FDA-test and trypan blue) of immature bovine oocytes was measured. The survival rate was higher in 5% PVP (91.5%) than in 0% (64.2%) or in 10% PVP (79.7%). The proportion of metaphase II formation was 69.35% in control (no vitrified COCs), 9.3% in 40% EG+0.5 M S+0% PVP and 21.05% in 40% EG+0.5 M S+5% PVP (p<0.05). The effect of room temperature ($25^{\circ}C$ for 10 min) and cold temperature ($4^{\circ}C$ for 10 min) on COCs were determined in this study. After IVF, the cleavage and blastocysts rate of oocytes exposed to room temperature and cold temperature in VS+5% PVP was significantly different (2 cell: 63.20% vs 37.97%, blastocysts: 18.40% vs 2.53%). The cleavage rates of frozen-thawed oocytes were 20.53% with PVP and 22.13% without PVP (p>0.05). Two out of 151 oocytes (1.32%) developed to blastocyst stage after frozen-thawed with 5% PVP (p>0.05). Development of oocytes after frozen-thawing to the 2 cell were not significantly affected with or without PVP following IVF. However, the vitrification of immature bovine oocytes with PVP maintained the ability to develop to the blastocyst stage after IVM-IVF and IVC, while no blastocysts were obtained from oocytes vitrified without PVP. These results suggested that PVP has a protective role for vitrification of immature bovine oocytes as far as survival is concerned, however, the protection was not sufficient enough to support blastocyst formation.