• Title/Summary/Keyword: Blastocyst formation

Search Result 278, Processing Time 0.027 seconds

Mouse Granulocyte-marcrophage Colony-stimulating Factor Enhances Viability of Porcine Embryos in Defined Culture Conditions

  • S. H Jun;X. S Cui;Kim, N. H
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.71-71
    • /
    • 2003
  • Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multifunctional cytokine that has been implicated in the regulation of pre-implantation embryo development across several species. The aim of this study was to determine the effects of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) on development of porcine parthenotes and nuclear transferred embryos, and on their expression of implantation-related genes. In the presence of bovine serum albumin, mGM-CSF did not increase the percentage of oocytes that developed to the blastocyst stage and at day 7 did not increase oocyte cell number. Addition of 10 mM GM-CSF to protein-free culture medium significantly increased the compaction and blastocoel formation of 1- to 2-cell parthenotes and cloned embryos developing in vitro. However, cell number was not increased when they were cultured in the presence of GM-CSF. Semi-quantitative reverse transcripts polymerase chain reaction (RT-PCR) revealed that mGM-CSF enhances mRNA expression of the leukemia inhibitory factor receptor, but does not influence interleukin-6 or sodium/glucose co-transporter protein gene expression in blastocyst stage parthenotes. These results suggest that mGM-CSF may enhance viability of porcine embryos developing in vitro in a defined culture medium.

  • PDF

The effects of different types of media on in vitro maturation outcomes of human germinal vesicle oocytes retrieved in intracytoplasmic sperm injection cycles

  • Fesahat, Farzaneh;Firouzabadi, Razieh Dehghani;Faramarzi, Azita;Khalili, Mohammad Ali
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.44 no.2
    • /
    • pp.79-84
    • /
    • 2017
  • Objective: Optimizing in vitro maturation (IVM) media to achieve better outcomes has been a matter of interest in recent years. The aim of this prospective clinical trial was to investigate the effects of different media on the IVM outcomes of immature oocytes at the germinal vesicle (GV) stage. Methods: A total of 400 immature oocytes at the GV stage with normal morphology were retrieved from 320 infertile women aged $31{\pm}4.63years$ during stimulated intracytoplasmic sperm injection (ICSI) cycles. They were divided into groups of homemade IVM medium (I, n = 100), cleavage medium (II, n = 100), blastocyst medium (III, n = 100), and Sage IVM medium (IV, n = 100) and cultured for 24 to 48 hours at $37^{\circ}C$. ICSI was performed, and the rates of fertilization and embryo formation were compared across the four groups. Results: In the 400 retrieved GV oocytes, the total maturation rates showed significant differences in groups I to IV (55%, 53%, 78%, and 68%, respectively, p<0.001). However, there were no significant differences in the fertilization, embryo formation, or arrest rates of metaphase II oocytes across these groups. In all groups, GV maturation was mostly completed after 24 hours, with fewer oocytes requiring 48 hours to mature (p<0.01). Moreover, the rate of high-quality embryos was higher in group IV than in the other groups (p=0.01). Conclusion: The quality of the IVM medium was found to affect clinical IVM outcomes. Additionally, blastocyst medium may be a good choice in IVM/ICSI cycles as an alternative IVM medium.

Effects of Oocyte Maturational Age and Activation Conditions on the Development of Porcine Parthenogenetic Embryos

  • Kwon, Dae-Jin;Park, Joo-Hee;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • This study was conducted to investigate the effects of oocyte maturational age and activation condition on in vitro development of porcine parthenogenetic embryos (parthenotes). Porcine follicular oocytes were matured in vitro for 30 to 44 hr. Maturation rate was examined during in vitro maturation (IVM) every 2 hr interval. The cdc2 kinase activity was measured at 36 and 44 hr of IVM. Some oocytes were activated at 36 or 44 hr of IVM by three different conditions; 1) single electric stimulation (1.5 kV/cm for $30{\mu}sec$; ES), 2) double electric stimulations (1.5 kV/cm for $30{\mu}sec$, followed by 1.0 kV/cm for $50{\mu}sec$ after 1 hr; ES+ES) or 3) ES+ES followed by culture in 6-dimethlyaminopurine (6-DMAP) for 4 hr (ES+ES+D), and cultured for 6-7 days. Maturation rate was significantly increased as culture period was increased to 36 hr (66.9%, p<0.05), and then gradually increased to 87.1% at 44 hr of IVM. The cdc2 kinase activity was decreased (p<0.05) with culture period prolonged from 36 hr to 44 hr. Lower blastocyst formation rate (4.3%, p<0.05) were obtained by ES in 36 hr-matured oocytes compared to other treatments (16.5 and 20.5%) in the same age and the same treatment in 44 hr-matured oocytes (15.0%). High blastocyst formation rate (23.6%) was obtained by ES+ES+D in 44 hr-matured oocytes (p<0.05). These results demonstrate that porcine oocyte activation and in vitro development of parthenotes can be affected by interactions between oocyte maturational age and activation condition.

Effects of Hyaluronidase during In Vitro Maturation on Maturation and Developmental Competence in Porcine Oocytes

  • Jeon, Ye-Eun;Hwangbo, Yong;Cheong, Hee-Tae;Park, Choon-Keun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.86-92
    • /
    • 2019
  • The aim of this study was to investigate effects of hyaluronidase during IVM on oocyte maturation, oxidative stress status, expression of cumulus expansion-related (PTX, pentraxin; GJA1, gap junction protein alpha 1; PTGS2, prostaglandin-endoperoxide synthase 2) and fatty acid metabolism-related (FADS1, delta-6 desaturase; FADS2, delta-5 desaturase; PPARα, peroxisome proliferator-activated receptor-alpha) mRNA, and embryonic development of porcine oocytes. The cumulus-oocyte complexes (COCs) were incubated with 0.1 mg/mL hyaluronidase for 44 h. Cumulus expansion was measured at 22 h after maturation. At 44 h after maturation, nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured. Gene expression in cumulus cells was analyzed using real time PCR. The cleavage rate and blastocyst formation were evaluated at Day 2 and 7 after insemination. In results, expansion of cumulus cells was suppressed by treatment of hyaluronidase at 22 h after maturation. Intracellular GSH level was reduced by hyaluronidase treatment (p < 0.05). On the other hand, hyaluronidase increased ROS levels in oocytes (p < 0.05). Only PTGS2 mRNA was enhanced in COCs by hyaluronidase (p < 0.05). Population of oocytes reached at metaphase II stage was higher in control group than hyaluronidase treated group (p < 0.05). Both of cleavage rate and blastocyst formation were higher in control group than hyaluronidase group (p < 0.05). Our present results showed that developmental competence of porcine oocytes could be reduce by hyaluronidase via inducing oxidative stress during maturation process and it might be associated with prostaglandin synthesis. Therefore, we suggest that suppression of cumulus expansion of COCs could induce oxidative stress and decrease nuclear maturation via reduction of GSH synthesis and it caused to decrease developmental competence of mammalian oocytes.

The effect of artificial shrinkage and assisted hatching on the development of mouse blastocysts and cell number after vitrification

  • Kim, Hye Jin;Lee, Ki Hwan;Park, Sung Baek;Choi, Young Bae;Yang, Jung Bo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.3
    • /
    • pp.94-100
    • /
    • 2015
  • Objective: The goal of this study was to ascertain optimal assisted hatching (AH) method in frozen embryo transfer. We compared the effect of depending on whether mechanical or laser-AH was performed before or after the vitrification of embryo development rate and blastocyst cell numbers. Methods: In order to induce superovulation, pregnant mare's serum gonadotropin followed by human chorionic gonadotropin were injected into 4- to 5-week-old female mice. 2-cell embryos were then collected by flushing out the oviducts. The Expanded blastocysts were recovered after the collected embryos were incubated for 48 hours, and were then subjected to artificial shrinkage (AS) and cross-mechanical AH (cMAH) or quarter-laser zona thinning-AH (qLZT-AH) were carried out using the expanded blastocysts before or after vitrification. After 48 hours of incubation, followed by vitrification and thawing (V-T), and blastocysts were fluorescence stained and observed. Results: The rate of formation of hatched blastocysts after 24 and 72 hours of incubation was significantly higher in the AS/qLZT-AH/V-T group than in the other groups (p<0.05). The cell number of the inner cell mass was higher in AS/V-T/non-AH and AS/V-T/cMAH groups than those of others (p<0.05). In the control group, the number of trophectoderm and the total cell number were higher than in the AS-AH group (p<0.05). Conclusion: The above results suggest that AS and AH in vitrification of expanded blastocysts lead to the more efficient formation of hatched blastocysts in mice.

Maintained MPF Level after Oocyte Vitrification Improves Embryonic Development after IVF, but not after Somatic Cell Nuclear Transfer

  • Baek, Ji I;Seol, Dong-Won;Lee, Ah-Reum;Lee, Woo Sik;Yoon, Sook-Young;Lee, Dong Ryul
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.871-879
    • /
    • 2017
  • Levels of maturation-promoting factor (MPF) in oocytes decline after vitrification, and this decline has been suggested as one of the main causes of low developmental competence resulting from cryoinjury. Here, we evaluated MPF activity in vitrified mouse eggs following treatment with caffeine, a known stimulator of MPF activity, and/or the proteasome inhibitor MG132. Collected MII oocytes were vitrified and divided into four groups: untreated, 10 mM caffeine (CA), $10{\mu}M$ MG132 (MG), and 10 mM caffeine + $10{\mu}M$ MG132 (CA+MG). After warming, the MPF activity of oocytes and their blastocyst formation and implantation rates in the CA, MG, and CA+MG groups were much higher than those in the untreated group. However, the cell numbers in blastocysts did not differ among groups. Analysis of the effectiveness of caffeine and MG132 for improving somatic cell nuclear transfer (SCNT) technology using cryopreserved eggs showed that supplementation did not improve the blastocyst formation rate of cloned mouse eggs. These results suggest that maintaining MPF activity after cryopreservation may have a positive effect on further embryonic development, but is unable to fully overcome cryoinjury. Thus, intrinsic factors governing the developmental potential that diminish during oocyte cryopreservation should be explored.

Effects of High Dose Lysophosphatidic Acid Supplement during IVC on Preimplantation Development of Porcine Embryos

  • Jin, Minghui;Yu, Il-Jeoung;Jeon, Yubyeol
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.275-285
    • /
    • 2017
  • Lysophosphatidic acid (LPA) is an important signaling molecule. Here, the effect and mechanism of LPA on the preimplantation development of porcine embryos during in vitro culture (IVC) was examined. Porcine embryos were cultured in porcine zygote medium (PZM-3) supplemented with $30{\mu}M$ LPA during different days. There was a significantly higher cleavage rate in Day 1-7 and significantly higher total cell number of blastocysts in Day 1-3 and Day 4-7. It was also found that messenger RNA (mRNA) expression level of PCNA, BCL2 and BAX in blastocysts obtained from D1-7 group were significantly higher and BCL2/BAX mRNA ratio in D1-3 group was significantly lower than control group but Day 4-7 and Day 1-7 groups were comparable with control group. Treatment with $20{\mu}M$ PLC inhibitor significantly decreased the embryo cleavage rate and blastocyst formation rate. Moreover, LPA as an activator of PLCs, enhanced the $30{\mu}M$ LPA + $20{\mu}M$ U73122 group embryo cleavage rate which similar with control group. In conclusion, the results suggest that treatment with LPA during IVC improves the porcine early embryo cleavage by activation of PLC signaling pathway and regulate the mRNA expression that contribute to total cell number of blastocysts during blastocyst formation.

Development of Porcine Embryos Following Intracytoplasmic Sperm Injection I. Effect of Activation and Sperm Capacitation (ICSI에 의한 돼지 수정란의 발달 I. 난자의 활성화와 정자의 수정능력 획득 유기 효과)

  • Moon S. J.;Ahn S. J.;Kang M. J.;Kim K. H.
    • Journal of Embryo Transfer
    • /
    • v.20 no.3
    • /
    • pp.201-206
    • /
    • 2005
  • This study was conducted to investigate the effects of oocyte activation after ICSI and of capacitation of insemination sperm before ICSI in Swine. There was no significant difference on cleavage rate and blastocyst developmental rate treated with ethanol, cycloheximide, or ethanol and cycloheximide jointly between treatment and control groups. However, significantly difference was found on cleavage rate and blastocyst developmental rate treated with caffeine and Ca-ionophore on capacitation of insemination sperm before ICSI (p<0.05). There was no significant difference on pronuclear formation rate and total oocyte activation rate treated with oocyte activation after ICSI between treatment and control groups, but was significant difference on pronuclear formation rate and total oocyte activation rate treated with capacitation treat of sperm (p<0.05).

Comparison of Two Different Serum-free Media for In Vitro Culture of Bovine Embryos

  • Kim, Se-Woong;Jung, Yeon-Gil;Park, Jong-Im;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.29 no.3
    • /
    • pp.229-234
    • /
    • 2014
  • The aim of the present study was to compare two different serum-free media, modified synthetic oviduct fluid (mSOF) and modified potassium simplex optimization medium (mKSOM) containing 20% RD (RPMI1640 + DMEM, 1:1 v/v) (RD-mKSOM), for in vitro culture (IVC) of bovine embryos. After in vitro maturation and fertilization, the presumptive zygotes were cultured in two different serum-free conditions for 7 days and 9 days to evaluate blastocyst formation and hatching, respectively. Serum supplemented conventional CR2 medium was used as control. After 7 day of culture, there was no significant difference in cleavage and blastocyst formation rates among three groups (mSOF, 59.3 and 30.1%; RD-mKSOM, 65.0 and 41.5%; control, 51.6 and 38.0%, respectively). Hatching rate was significantly higher in control (69.0%) than other experimental groups (mSOF, 22.0%; RD-mKSOM, 39.5%) (P<0.0001 and P<0.001, respectively). Although both serum-free conditions showed lower hatching rates than serum-added control, in serum-free groups, RD-mKSOM showed significantly higher hatching rate than mSOF (P<0.001). In addition, one-step using RD-mKSOM may facilitate IVC procedure than two-step culture system. In conclusion, the results indicate that one-step RD-mKSOM is more suitable defined culture system for IVC of bovine embryos than two-step mSOF.

Factors Affecting Primary Culture of Nuclear Transfer Blastocysts for Isolation of Embryonic Stem Cells in Miniature Pigs

  • Kim, Min-Jeong;Ahn, Kwang-Sung;Kim, Young-June;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.133-137
    • /
    • 2009
  • Pluripotent embryonic stem (ES) cells isolated from inner cell mass (ICM) of blastocyst-stage embryos are capable of differentiating into various cell lineages and demonstrate germ-line transmission in experimentally produced chimeras. These cells have a great potential as tools for transgenic animal production, screening of newly-developed drugs, and cell therapy. Miniature pigs, selectively bred pigs for small size, offer several advantages over large breed pigs in biomedical research including human disease model and xenotransplantation. In the present study, factors affecting primary culture of somatic cell nuclear transfer blastocysts from miniature pigs for isolation of ES cells were investigated. Formation of primary colonies occurred only on STO cells in human ES medium. In contrast, no ICM outgrowth was observed on mouse embryonic fibroblasts (MEF) in porcine ES medium. Plating intact blastocysts and isolated ICM resulted in comparable attachment on feeder layer and primary colony formation. After subculture of ES-like colonies, two putative ES cell lines were isolated. Colonies of putative ES cells morphologically resembled murine ES cells. These cells were maintained in culture up to three passages, but lost by spontaneous differentiation. The present study demonstrates factors involved in the early stage of nuclear transfer ES cell isolation in miniature pigs. However, long-term maintenance and characterization of nuclear transfer ES cells in miniature pigs are remained to be done in further studies.