Proceedings of the Korean Geotechical Society Conference
/
한국지반공학회 2000년도 가을 학술발표회 논문집
/
pp.463-470
/
2000
In tunnel excavation by blast beneath the surface structures in urban area, the characteristics of ground vibration induced by blast and its influence on surface structures are analyzed by the field test and the numerical analysis on dynamic behaviors of the structure. According to the field test on the propagating characteristics of blast vibration through the rock mass and the concrete foundation pile. the attenuation index of peak particle velocity with distance shows the range of 1.7∼2.0 for the rock mass and the range of 2.0∼2.3 for the concrete pile. This shows that the blast vibration reduces more rapidly in the concrete pile. It is known from the numerical analysis on dynamic behavior of the structure that the coefficient of response, velocity ratio of structure response to input wave, is different according to the story of the structure. It can be said from this research that the characteristics of the ground vibration and the dynamic behavior of the structure should be well evaluated and be considered as important factors for safe blasting design especially in underground excavation at shallow depth in urban area.
Proceedings of the Korean Institute of Building Construction Conference
/
한국건축시공학회 2015년도 추계 학술논문 발표대회
/
pp.177-178
/
2015
Various vibration caused by construction vehicles and equipment movement, rock blasting, and crushing obstacle occurs inevitably in construction sites. In this study, we measured the impact of vibration by blasting rock at construction sites, rock crushing, concrete crushing. The measuring instrument was installed in adjacent buildings and observed that blasting vibration differs depending on the charge weight, blasting distance, and the measuring position. The observation was maintained by allowable peak particle velocity standard according to each standards and references.
The customary approach used in the blast vibration analysis is to derive empirical relations between the peak particle velocities of blast-induced waves and the scaled distance, and to develop patterns limiting the amounts of explosives. During the periods when excavations involving blasting were performed at sites far from residential areas and infrastructure works, this method based on empirical correlations could be effective in reducing vibrations. However, blasting procedures applied by the fast-moving mining and construction industries today can be very close to, in particular cities, residential areas, pipelines, geothermal sites, etc., and this reveals the need to minimize blast vibrations not only by limiting the use of explosives, but also employing new scientific and technological methods. The conventional methodology in minimizing blast vibrations involves the steps of i) measuring by seismograph peak particle velocity induced by blasting, ii) defining ground transmission constants between the blasting area and the target station, iii) finding out the empirical relation involving the propagation of seismic waves, and iv) employing this relation to identify highest amount of explosive that may safely be fired at a time for blasting. This paper addresses practical difficulties during the implementation of this conventional method, particularly the defects and errors in data evaluation and analysis; illustrates the disadvantages of the method; emphasizes essential considerations in case the method is implemented; and finally discusses methods that would fit better to the conditions and demands of the present time compared to the conventional method that intrinsically hosts the abovementioned disadvantages.
Several conversion formulas to convert peak particle velocity to vibration label were studied for their validity and applied to environmental dispute cases. Special cases like structural damage by blast vibration was accepted while mental damage was not accepted were discussed. Results show that inadequate formula was used or construction damage caused by subsidence or disturbance of ground were misidentified as vibration damage for some cases.
The only law related to airblast and ground vibration control in Korea is the Noise and Vibration Control Act enforced by the Ministry of Environment. But this law mainly deals with the annoyance aspects of noises and vibrations in ordinary human life. Hence, the law defines the safety criteria of ground vibration as the vibration level (VL) of dB(V) unit. The ground vibrations produced from blasting, however, have the unique characteristics that can be shown in shock vibrations, and the duration is also very short compared to the vibrations from machinery, tools or facilities. Hence, vibration regulations for blasting operations usually define the safety criterion as the peak particle velocity (PPV) considering the effect of ground vibrations to structural damage. Notwithstanding, there are several attempts that predict VL from PPV or estimate VL based on the scaled distances (SD; in unit of $m/kg^{1/2}$ or $m/kg^{1/3}$) without considering their frequency spectra. It appears that these attempts are conducted mainly for the purpose of satisfying the law in blasting contracts. But, in principle there could no correlation between peaks of velocity and acceleration over entire frequency spectrum. Therefore, such correlations or estimations should be conducted only for the waves with the same or very similar frequency spectra.
Journal of the Korean Professional Engineers Association
/
제15권2호
/
pp.3-15
/
1982
The study on prevention measures for vibration and excavation of tunnel for the #3, #4, Seoul Subway. In the Seoul subway tunnel blasting, the drilling pattern and prevention method to seismic vibration are as follows as well as for adaptions of NATM, the supportings of roof and wall holes are arranged with control blasting. 1. The blasting is executed basically using the low velocity explosive such as slurry, Nitrate ammonium explosive, and F-I and F-II explosive for control blasting substituting of existing dynamite. 2. The cut holes are arranged with burn cut pattern and also must be arranged with M/S electrical delay caps substituting of ordinary do]ay caps. 3. Jack leg drills are used in Five Job sites and a jumbo drill in one job site. 4. In performance of safety work and in maintenance of building safety. The drilling length for blasting will not exceed 1.20 meter for round so that the vibration value shall carry below 0.3cm/sec. The harmonizing of better powder, better drilling machine and better technique is only the way of improving tunnelling efficiency and less vibration will help the dereasing of accidence.
KSCE Journal of Civil and Environmental Engineering Research
/
제43권4호
/
pp.459-468
/
2023
Power plant is a kind of basic industrial facility and might cause fatal industrial and human damage. In this study, the characteristics and effect of blast-induced vibration for tunnelling which underpass ○○ power plant in operation were evaluated. Previous blasting cases adjacent to industrial facilities were intensively reviewed, then allowable vibration criteria were suggested. 3 dimensional dynamic numerical analysis based on finite element method was performed to investigate particle velocity and resonance was examined by calculating the predominant frequencies. As a result, particle velocity at pump foundation which is nearest to the source was approached to the allowable criteria, therefore, the modified blasting pattern was newly suggested and confirmed the attenuation effect based on the test blasting. Consequently, appropriated decision-support procedure was established in case of adjacent blasting to industrial facilities.
The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill $\varphi{70mm}$ on the calcalious sand stone(sort-moderate-semi hard Rock). The total numbers of feet blast were 88. Scale distance were induces 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagtion Law in Blasting Vibration $V=K(\frac{D}{W^b})^n$ where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites (m) W : Maximum Charge per delay-period of eighit milliseconds or more(Kg) K : Ground transmission constant, empirically determind on th Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity $D/W^b$ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three graups. Cabic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge per delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over loom distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30m----under l00m----- $V=41(D/3\sqrt{W})^{-1.41}$ -----A Over l00m-----$V= 121(D/3\sqrt{W})^{-1.66}$-----B K value on the above equation has to be more specified for furthur understang about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.
The cautious blasting works had been used with emulsion explosion electric M /S delay caps. Drill depth was from 3m to 6m with Crawler Drill 70mm on the calcalious sand stone (soft-moderate-semi hard Rock) . The total numbers of feet blast were 88. Scale distance were induces 15.52-60.32. It was applied to Propagation Law in blasting vibration as follows .Propagtion Law in Blasting Vibration V=k(D/W/sup b/)/sup n/ where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W ; Maximum Charge per delay -period of eight milliseconds or more(Kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity D/W/sup b/ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three groups. Cabic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over loom distance because the frequency is varified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30m--under 100m----V=41(D/ W)/sup -1.41/-----A Over l00m---------V=121(D/ W)/sup -1.56/-----B K value on the above equation has to be more specified for furthur understand about the effect of explosives. Rock strength, And Drilling pattern on the vibration levels, it is necessary to carry out more tests.
Transactions of the Korean Society for Noise and Vibration Engineering
/
제19권3호
/
pp.313-319
/
2009
The blasting has a lot of economic efficiency and speediness but it can damage to a neighbor structure, a domestic animal and a cultured fish due to the blasting vibration, then the public grievance is increased. Therefore, we need to manage the blasting vibration efficiently. The prediction of the correct vibration velocity is not easy because there are lots of different kinds of the scale of blasting vibration and it has a number of a variable effect. So we figure the optimum line through the least-squares regression by using the vibration data measured in hard rock blasting and compared with the design vibration prediction equation. As a result, we confirm that the vibration estimated in this paper is bigger than the design vibration prediction equation in the same charge and distance. If there is a Gaussian normal distribution data on the left-right side of the least squares regression, then we can estimate the vibration prediction equation on reliability 50%(${\beta}=0$), 90%(${\beta}=1.28$), 95%(${\beta}=1.64$). 99.9%(${\beta}=3.09$). As a result, it appears to be suitable that the reliability is 99% at the transverse component, the reliability 95% is at the vertical component, the reliability 90% is at the longitudinal component and the reliability is 95% at the peak vector sum component.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.