• Title/Summary/Keyword: Blasting vibration velocity

Search Result 128, Processing Time 0.022 seconds

The Comparison of the Ground Vibration Velocity by Dynamite and Finecker Blasting (다이너마이트와 미진동파쇄기 발파에 의한 지반진동속도 비교)

  • Kim, Il-Jung
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.39-47
    • /
    • 1996
  • The results of the regression analysis and comparative study between 120 vibration events by dynamite blasting and 68 vibration events by finecker blasting which were monitored in the test blasting are as follows: The ground vibration velocity of dynamite blasting of 0.12 kg charge weight per delay at 7.4 m above the explosive is higher than that of finecker blasting of 0.96 kg charge weight per delay. In the case of 0.12 kg charge weight per delay, the ground vibration velocity of finecker blasting is equal to 5.5% of that of dynamite blasting at the 10 m distance from explosive. The decrement of ground vibration velocity of dynamite blasting of above 0.12 kg charge weight per delay is larger than that of finecker blasting of below 0.96 kg charge weight per delay. The rate of ground vibration velocity of the finecker blasting to that of dynamite blasting decreases with the distance from explosives, but increases with the decrease of charge weight per delay. The increment of ground vibration velocity of finecker blasting is less than that of dynamite blasting with the increase of charge weight per delay at the same distance from explosives. Under the condition of the constant critical ground vibration velocity or use the same charge weight per delay, the blasting working by finecker rather than by dynamite is able to be performed at the nearer place to structures.

  • PDF

The Vibration Velocity and Vibration Level of Near-field Blasting Vibration in an Urban Blasting Site (근접장 발파진동에서 진동속도와 진동레벨)

  • Lee, Yeon-Soo;Chang, Seo-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.766-771
    • /
    • 2005
  • To compare blasting vibration at blasting construction field in urban area, the vibration level (dB(V)) and vibration velocity (cm/sec) on the ground and the structure of buildings due to the differences of the measuring sites from the blasting source is investigated and the difference between the measured vertical vibration level and the calculated vibration level by using vibration velocity PVS and the correlation between vibration velocity and vibration level and is studied in the thesis.

  • PDF

The Vibration Velocity and Vibration Level of Near-field Blasting Vibration in an Urban Blasting Site (근접장 발파진동에서 진동속도와 진동레벨의 비교)

  • Lee, Yeon-Soo;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.918-923
    • /
    • 2005
  • The vibration level (dB(V)) and vibration velocity (cm/sec) on the ground and buildings due to the differences of the measuring sites from the blasting source was investigated. To compare with vibration level and vibration velocity theirs magnitude was not surely directly proportional and vibration velocity 0.1 cm/sec was $45\~50$ dB(V). The difference between the measured vibration level and the calculated vibration level by Ejima's equation using vibration velocity PVS(peak vector sum) showed $21.0\~30.9$ dB(V) on the ground, $15.3\~23.6$ dB(V) on the apartment, respectively. And the correlation of vibration velocity and nitration level at the measuring sites of lower altitude showed higher than that of higher altitude.

The Characteristics of Blasting Vibration in the Construction of Apartment and Buildings in Urban Area (도심지 발파공사장의 발파진동 특성)

  • 이연수;장서일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.521-526
    • /
    • 2004
  • In order to evaluate the effect of blasting vibration in buildings and it's resident located around blasting construction field in urban area, blasting vibration characteristics were measured the vibration level, vibration velocity. The 250g and 750g of charged powder were used at the apartment and at the ground, respectively. In the measurement of the ground, Z(perpendicularity) axis was the highest value in vibration level, but vertical axis was the highest value at 25m point and longitudinal axis was the highest value at 50m point in vibration velocity. The amount of measurement was high value when measuring point is higher than blasting source, while that of measurement was low value when measuring point is lower than blasting source. In the measurement of the apartment, 2 axis was the highest value in vibration level, but in vibration velocity transverse axis was the highest value at ground, was vertical axis at 1st floor, was longitudinal axis at 3rd floor and was vertical and longitudinal axis at 5th floor. The vibration level and the vibration velocity of 50m point showed higher correlation value than 25m point at the ground, but those of 25m point showed higher correlation value than 50m point at the apartment.

  • PDF

The Characteristics of Blasting Vibration in the Construction of Apartment and Buildings in Urban Area (도심지 발파공사장의 발파진동 특성)

  • 장서일;이연수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.632-638
    • /
    • 2004
  • In order to evaluate the effect of blasting vibration in buildings and it's resident located around blasting construction field in urban area, blasting vibration characteristics were measured by the vibration level, vibration velocity. The 250g and 750g of charged powder were used at the apartment and at the ground, respectively. In the measurement of the ground, 2 (perpendicularity) axis was the highest value in vibration level, but vertical direction was the highest value at 25 m point and longitudinal direction was the highest value at 50 m point in vibration velocity. The amount of measurement was high value when measuring point is higher than blasting source, while that of measurement was low value when measuring point is lower than blasting source. In the measurement of the apartment, Z axis was the highest value in vibration level, but in vibration velocity transverse direction was the highest value at ground, was vertical direction at 1st floor, was longitudinal direction at 3rd floor and was vertical and longitudinal direction at 5th floor. The vibration level and the vibration velocity of 50 m point showed higher correlation value than 25 m point at the ground, but those of 25 m point showed higher correlation value than 50 m point at the apartment.

A Study on the Prediction Method of Blasting Vibration (발파진동 예측방법에 관한 연구)

  • Lee, Yeon-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.361-365
    • /
    • 2006
  • In order to predict method of blasting vibration in ground and it's resident located around blasting field in urban area, blasting vibration characteristics were measured the vibration velocity(cm/sec), vibration acceleration($cm/sec^2$), vibration acceleration level(dB) and vibration level(dB(V)). The charged powder were used to 1.25kg and measuring sites were 25 points front 4m to 90m at the ground. The correlation of vibration velocity, vibration acceleration, vibration acceleration level and vibration level by square root scaled distance and cube root scaled distance were investigated. The correlation of PPV(peak particle velocity) velocity by SRSD(square root scaled distance) and CRSD(cube root scaled distance) was 0.85 and 0.86 and the correlation of PVS(peak vector sum) velocity by SRSD and CRSD was 0.82. Also vibration acceleration, vibration acceleration level and vibration level by SRSD and CRSD was 0.61, 0.62 and 0.82, respectively. As results, the vibration velocity and vibration level(dB(V)) was showed good correlation, but the vibration acceleration and vibration acceleration level was not showed good correlation.

  • PDF

A study on the control of vibration caused by a blasting (발파진동 저감방법에 관한 연구)

  • 석철기
    • Explosives and Blasting
    • /
    • v.16 no.2
    • /
    • pp.34-46
    • /
    • 1998
  • We developed a method to control vibration from some blasting points. This method uses a correlation of vibration waves to decide the most effective delay time to control vibration by interfering vibration waves with each other. We applied this method to the small blasting using mortar blocks and examined the effect on controlling vibration. As the result of the examinations, the maximum vibration velocity by this method caused by five detonators blasting in row of five holes became smaller than that by a detonator blasting in the nearest hole from the measuring point. And the velocity was about one fifth of that of maximum condition in which vibration waves caused by the five detonators arrivved at the same time to the measuring point.

  • PDF

A Study on the Ground Vibration Reduction Characteristics of Air-Deck Blasting Method Using Paraffin Waxed Paper Tube (파라핀 지관 구조체를 활용한 Air-Deck 발파공법의 지반진동 저감특성에 관한 연구)

  • Gyeong-Jo, Min;Young-Keun, Kim;Chan-Hwi, Shin;Sang-Ho, Cho
    • Explosives and Blasting
    • /
    • v.41 no.1
    • /
    • pp.32-45
    • /
    • 2023
  • Environmental regulations in Korea for blasting at industrial sites have conservative standards, which often result in reduced efficiency and cost-effectiveness due to the consideration of environmental regulations and public complaints. Therefore, there is a need for blasting methods that can reduce environmental damage while improving construction efficiency and cost-effectiveness. In this study, we analyzed the effects of the PA-Deck (Paraffin Air-Deck) blasting method, which is a kind of Air Decoupled Charge method in principle utilizing a paraffin-infused paper tube as an air gap, on reducing blasting hazards and improving blasting efficiency. The analysis also evaluated the effectiveness of newly applied equipment for collecting blasting vibration data, and derived the relationship between the explosion velocity and vibration velocity of explosives, and performed frequency analysis of the vertical component. The results of the blasting vibration velocity analysis showed that the Paraffin Waxed Paper Tube-based blasting method exhibited significantly lower vibration velocities compared to conventional blasting methods, and it was judged that more uniformly small-sized fragmented rocks were generated.

A Study on the Prediction & Transformation of Blasting Vibration for Environmental Regulation Standard (발파진동의 예측기법과 환경규제 기준으로의 변환 연구)

  • 김남수;양형식
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.14-19
    • /
    • 2001
  • The estimation of proper prediction method and the transformation method of environmental regulation standard were carried out by measuring blasting vibration. Vibration velocity was more adequate than vibration level in the blasting design by scaled distance. Thus, design and construction mutt be controlled by vibration velocity, and it is required that the vibration velocity is transformed to vibration level to meet regulation standard. Three transformation methods were studied. First, transformation formula is derived from the shock vibration data only. The second method it the transformation by correlation equation of vibration velocity and vibration level measured at the same time. The last one is the transformation of vibration velocity by FFT. It seems to be difficult to estimate damages by these methods because that every method shows considerable error. But transformation formula of PPV component to vibration level was most practical.

  • PDF

A Numerical Study on the Effective Dimension in Slot-drilling Method (슬롯드릴링공법의 유효제원에 관한 수치해석적 연구)

  • Yoon, Ji-Sun;Lee, Jee-Hoon;Son, Sung-Hoon
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.50-58
    • /
    • 2010
  • This study explores the slot-drilling method that has not yet enough been studied in Korea and intends to provide a theoretical framework for putting the method into practice in a construction site. The possible reduction of ground vibration by implementing slot-drilling methods is addressed. Two main subjects dealt with include the variation of vibration velocity that is based on the distance between the slot-drilling and the epicenter of blasting and the analysis of appropriate effective dimension of slot-drilling width and height to control blasting vibration. This study shows that effect of vibration reduction decreases when distance of the slot-drilling and the epicenter of blasting is getting larger and also reveals that there is a correlation between the slot size and the vibration velocity at any point.