• Title/Summary/Keyword: Blasting conditions

Search Result 151, Processing Time 0.028 seconds

Estimation of the Terminal Velocity of the Worst-Case Fragment in an Underwater Torpedo Explosion Using an MM-ALE Finite Element Simulation (MM-ALE 유한요소 시뮬레이션을 이용한 수중 어뢰폭발에서의 최악파편의 종단속도 추정)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.13-24
    • /
    • 2019
  • This paper was prepared to investigate the behavior of fragments in underwater torpedo explosion beneath a frigate or surface ship by using an explicit finite element analysis. In this study, a fluid-structure interaction (FSI) methodology, called the multi-material arbitrary Lagrangian-Eulerian (MM-ALE) approach in LS-DYNA, was employed to obtain the responses of the torpedo fragments and frigate hull to the explosion. The Euler models for the analysis were comprised of air, water, and explosive, while the Lagrange models consisted of the fragment and the hull. The focus of this modeling was to examine whether a worst-case fragment could penetrate the frigate hull located close (4.5 m) to the exploding torpedo. The simulation was performed in two separate steps. At first, with the assumption that the expanding skin of the torpedo had been torn apart by consuming 30% of the explosive energy, the initial velocity of the worst-case fragment was sought based on a well-known experimental result concerning the fragment velocity in underwater bomb explosion. Then, the terminal velocity of the worst-case fragment that is expected to occur before the fragment hit the frigate hull was sought in the second step. Under the given conditions, the possible initial velocities of the worst-case fragment were found to be very fast (400 and 1000 m/s). But, the velocity difference between the fragment and the hull was merely 4 m/s at the instant of collision. This result was likely to be due to both the tremendous drag force exerted by the water and the non-failure condition given to the frigate hull. Anyway, at least under the given conditions, it is thought that the worst-case fragment seldom penetrate the frigate hull because there is no significant velocity difference between them.

Spray Deposit Distribution of a Small Orchard Sprayer (소형 과수방제기 살포입자의 부착량 분포)

  • Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.32 no.3
    • /
    • pp.145-152
    • /
    • 2007
  • Uniformity of spray deposit is one of the important factors in spray performance affecting efficacy of pest management. Distributions of spray deposit on artificial targets were measured and analyzed to enhance the efficiency of spray application. The research was studied to understand the deposition characteristics of spray droplets and to determine the optimum conditions of chemical application. The deposit and its pattern by the lower fan speed was more uniform and higher than that by the higher fan speed. The upward blasting distance was limited within 3 m, but the limit to the ground level was expanded the distance more than 3.5 m because of the accumulated droplets. When the fan speed was higher at the distance of 2.5 m, deposit reached to maximum. When the distance increased, deposit was getting lower. At the both fan speeds, the deposit was concentrated below $30^{\circ}$ because of the gravitation and the resistance of wind. This research can be useful in designing an orchard sprayer and its operation for various tree canopies. To achieve a uniform distribution of deposit using the air-blast type orchard sprayer, the application rate from the middle boom should be increased as the air velocity to the upward increased. The spray rate to the side boom should be limited in a minimal level.

Stability Analysis for Two Arch Excavation of a Tunnel Portal (터널 갱구 2 Arch 굴착에 따른 안정성 해석)

  • 이길재;유광호;박연준;채영수
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.179-188
    • /
    • 2002
  • This study is to understand the effect of the vibration and the stress changes due to the excavation of 2 arch parts of a tunnel, which is a Gyungbu Express Railway tunnel, on the tunnel itself and adjacent slopes in advance, and to analyze the stability. For the estimation of ground conditions, borehole tests, borehole camera logging and seismic logging were performed. Ground properties at a specific location were determined as input constants by performing 2 dimensional analyses with possible ranges of uncertain ground properties. Static and pseudo-static (due to blasting vibration) factors of safety were calculated. The behavior of the tunnel and its vicinity due to the tunnel excavation were predicted by 3 dimensional analyses. It was also tested whether the support system was proper.

A Case Study on the Design of Railway Tunnel through section for under OO temple (OO 사찰 하부 터널통과 설계 사례)

  • Kim, Shin;Lee, Sung-Ki;Seo, Hyoung-Chul;Kwag, Jung-Yeol;Cho, Bong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.208-218
    • /
    • 2006
  • It is very important to evaluate predictable problems diversely such as stability of a tunnel and structures when tunnel is inevitably constructed in the area where is adjacent to a structure and low overburden. Double electrified railway design on the third section of Donghae-Nambu line studied in this paper has some problems mentioned above. So more careful works are required before construction. In this study, ground surrounding is composed of faults, fault zone and set back about 13m from a Buddhist temple located on the upper part of the tunnel. From these conditions, this case study presents proper methods considering ground condition, effects of blasting and civil petitions. It is tried to make the tunnel and Buddhist temple stable by analytical technique and analysis of existing cases. And design considering stability of tunnel and adjacent structure during operation is carried out as well. Especially, environmentally friendly railway tunnel which is appropriate to the local condition and surroundings is designed by minimizing noise and vibration that is able to occur during construction and train service. From now on, this study is helpful to better design in the case of tunnel design which has to consider civil petition.

  • PDF

Modern High-Power TBM with Advanced Procurement System (오늘날의 고성능 TBM과 선진 장비조달 방안)

  • Jee, Warren W.
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.161-168
    • /
    • 2013
  • Recently, the application of High-Power mechanized tunnelling technology has been expended around the world. Especially, High-power Modern TBM machines are used in a successful results. Essential for the great success of this modern TBM in difficult rock conditions are based on the development of machine power, suitable better cutter developments, and also developed assesment technology regards on the extensive site investigations. OPP (Owner Procurement Process) system is a proven alternative contract delivery method that is potentially applicable to many tunnel projects. Using the OPP, the owner specifies and procures the TBMs and tunnel lining in advance of the tunnel contract procurement and provides TBM to a tunnel contractor with a goals of reducing project risks and accelerating project schedule. Depending on the blasting vibrations and noises, mechanized tunnelling will be more important particularly in city areas.

Measurement of rock fracture toughness under mode I, II & mixed-mode conditions by using disc-typed specimens (인장, 전단 및 혼합모드에서 디스크 시험편을 이용한 암석의 파괴인성 측정에 관한 연구)

  • 장수호;이정인
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.315-327
    • /
    • 1999
  • Rock fracture mechanics has been widely applied to blasting, hydraulic fracturing, rock slope and many other practical problems in rock engineering. But a measuring method for the fracture toughness of rock, one of the mort important parameters in fracture mechanics as an intrinsic property of rock, has not been yet well established. To obtain mode I rock fracture toughness, the more favorable disc-typed specimens such as CCNBD, SCB, chevron-notched SCB and BDT were used in this study. Rock fracture toughness under mixed-mode and mode II conditions was measured by using the STCA applied to the CCNBD specimen. Size effects such as specimen thickness, diameter and notch length on fracture toughness were investigated. From the mixed-mode results, fracture envelops were obtained by applying various regression curves. The mixed-mode results were also compared with three mixed-mode failure criteria. In each fracture toughness test, acoustic emission was measured to get the data for determining the load levels of different crack propagation patterns.

  • PDF

Deep learning-based AI constitutive modeling for sandstone and mudstone under cyclic loading conditions

  • Luyuan Wu;Meng Li;Jianwei Zhang;Zifa Wang;Xiaohui Yang;Hanliang Bian
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.49-64
    • /
    • 2024
  • Rocks undergoing repeated loading and unloading over an extended period, such as due to earthquakes, human excavation, and blasting, may result in the gradual accumulation of stress and deformation within the rock mass, eventually reaching an unstable state. In this study, a CNN-CCM is proposed to address the mechanical behavior. The structure and hyperparameters of CNN-CCM include Conv2D layers × 5; Max pooling2D layers × 4; Dense layers × 4; learning rate=0.001; Epoch=50; Batch size=64; Dropout=0.5. Training and validation data for deep learning include 71 rock samples and 122,152 data points. The AI Rock Constitutive Model learned by CNN-CCM can predict strain values(ε1) using Mass (M), Axial stress (σ1), Density (ρ), Cyclic number (N), Confining pressure (σ3), and Young's modulus (E). Five evaluation indicators R2, MAPE, RMSE, MSE, and MAE yield respective values of 0.929, 16.44%, 0.954, 0.913, and 0.542, illustrating good predictive performance and generalization ability of model. Finally, interpreting the AI Rock Constitutive Model using the SHAP explaining method reveals that feature importance follows the order N > M > σ1 > E > ρ > σ3.Positive SHAP values indicate positive effects on predicting strain ε1 for N, M, σ1, and σ3, while negative SHAP values have negative effects. For E, a positive value has a negative effect on predicting strain ε1, consistent with the influence patterns of conventional physical rock constitutive equations. The present study offers a novel approach to the investigation of the mechanical constitutive model of rocks under cyclic loading and unloading conditions.

Prediction of Disk Cutter Wear Considering Ground Conditions and TBM Operation Parameters (지반 조건과 TBM 운영 파라미터를 고려한 디스크 커터 마모 예측)

  • Yunseong Kang;Tae Young Ko
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.143-153
    • /
    • 2024
  • Tunnel Boring Machine (TBM) method is a tunnel excavation method that produces lower levels of noise and vibration during excavation compared to drilling and blasting methods, and it offers higher stability. It is increasingly being applied to tunnel projects worldwide. The disc cutter is an excavation tool mounted on the cutterhead of a TBM, which constantly interacts with the ground at the tunnel face, inevitably leading to wear. In this study quantitatively predicted disc cutter wear using geological conditions, TBM operational parameters, and machine learning algorithms. Among the input variables for predicting disc cutter wear, the Uniaxial Compressive Strength (UCS) is considerably limited compared to machine and wear data, so the UCS estimation for the entire section was first conducted using TBM machine data, and then the prediction of the Coefficient of Wearing rate(CW) was performed with the completed data. Comparing the performance of CW prediction models, the XGBoost model showed the highest performance, and SHapley Additive exPlanation (SHAP) analysis was conducted to interpret the complex prediction model.

An Experimental Study on the Determination of Damage Thresholds in Rock at Different Stress Levels (응력수준에 따른 암석의 손상기준 결정에 관한 실험적 연구)

  • Chang Soo-Ho;Lee Chung-In
    • Explosives and Blasting
    • /
    • v.23 no.4
    • /
    • pp.31-44
    • /
    • 2005
  • In highly stressed conditions, the excavation damage zone induced by stress redistribution and disturbance must be evaluated after tunnel excavation. Therefore, the investigation of stress-induced deformation and fracture in rock is indispensable. In this study, fracture and damage mechanisms of rock induced by the accumulation of microcracks were investigated by the moving point regression technique as well as acoustic emission measured during uniaxial compression tests. Especially, the modified procedures to determine damage thresholds more systematically were newly proposed, and successfully applied to rock. From experiments, crack initiation and track damage stress levels were estimated to be $33{\~}36\%$ and $84{\~}89\%$ of uniaxial compressive strength respectively, for both of Hwangdeung granite and Yeosan marble. However, the normalized crack closure stress level for Yeosan marble was much higher than for Hwangdeung granite. In addition, the largest proportion of total axial strain in Hwangdeung granite was attributable to elastic deformation and initial microcracking. However, the greatest part of axial deformation in Yeosan marble arose from initial crack closure and unstable cracking. Finally, it was seen that unstable cracking after the crack damage stress level played a key part in the lateral deformation in rocks under uniaxial compression.

A study on adhesion properties between composite material and aluminum according to the physical surface treatment technique (물리적 표면처리 기법에 따른 복합소재 및 알루미늄간 접합특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.334-339
    • /
    • 2020
  • In this study, the adhesion properties between aluminum and composite materials, composite materials, and composite materials were compared according to the physical surface treatment to improve mechanical bonding at the bonding surface when considering carbon fiber and glass fiber-reinforced composite materials. Bonded specimens were classified into the type of base material and the surface treatment method of the bonding surface. Sandpaper, sandblasting, and plasma were applied as physical surface treatment methods. The bonded specimen was prepared as a single lap joint test specimen. An experiment to measure the lap shear strength was conducted, and the results were compared. The experimental results confirmed that the mechanical abrasion and sandblasting treatment improved the lap shear strength approximately 4 to 5 fold compared to the general specimen without physical surface treatment. In plasma treatment, the experiment was conducted by defining the respective plasma output and treatment time as follows: 150 W and 5 minutes, 150 W and 10 minutes, and 300 W and 3 minutes. Moreover, the lap shear strength results were similar to the previous mechanical surface treatments. On the other hand, the effect on the adhesion properties was small, depending on the plasma treatment conditions.