• Title/Summary/Keyword: Blast analysis

Search Result 985, Processing Time 0.024 seconds

Analysis of the range estimation error of a target in the asynchronous bistatic sonar (비동기 양상태 소나의 표적 거리 추정 오차 분석)

  • Jeong, Euicheol;Kim, Tae-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.163-169
    • /
    • 2020
  • The asynchronous bistatic sonar needs to estimate direct blast arrival time at a receiver to localize targets, and therefore the direct blast arrival time estimation error could be added to target localization error in comparison with synchronous system. Direct blast especially appears as several peaks at the matched filter output by multipath, thus we compared the first peak detection technique and the maximum peak detection technique of those peaks for direct blast arrival time estimation through sea trial data. The test was performed in a shallow sea with bistatic sonar made up of spatially separated source and line array sensors. Line array sensors obtained the target signal which is generated from the echo repeater. As a result, the first peak detection technique is superior to maximum peak detection technique in direct blast arrival time estimation error. The result of this analysis will be used for further research of target tracking in the asynchronous bistatic sonar.

Improvement of Early Strength of Blast-Furnace Slag Blended Cement at Low Temperature (고로 슬래그 시멘트의 저온 조기 강도 증진)

  • 장복기;임용무;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.130-135
    • /
    • 1999
  • The enhanced slag fineness and the batch water of low water-to-cement ratio(W/C) were employed in order to improve the early strength of blast-furnace slag blended cement at low temperature. A grinding aid was used to grind the blast-furnace slag into the fineness of 6,280$\textrm{cm}^2$/g (Blaine), and this fine slag was then homogeneously mixed with the ordinary Portland cement to produce the blast-furnace slag blended cement containing 40% slag by weight composition. On the other hand, the batch water could be reduced from W/C=0.50 (KS L 5105) to W/C=0.33 through a commercial, naphthalene type superplasticizer. Through the method mentioned above, the early strength of the blast-furnace slag blended cement at low temperature could be enhanced even somewhat higher than the Portland cement strength. And the microsturcture of the cement was studied by both the pore structure analysis and the A.C. impedance measurement.

  • PDF

Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions

  • Sohn, Jung Min;Kim, Sang Jin;Seong, Dong Jin;Kim, Bong Ju;Ha, Yeon Chul;Seo, Jung Kwan;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.755-771
    • /
    • 2014
  • Environmental changes, especially global climate change, are creating new challenges to the development of the Arctic regions, which have substantial energy resources. And attention to offshore structures has increased with oil and gas development. The structural impact response of an explosion-resistant profiled blast walls normally changes when it operates in low temperatures. The main objectives of this study are to investigate the structural response of blast walls in low temperature and suggest useful guidelines for understanding the characteristics of the structural impact response of blast walls subjected to hydrocarbon explosions in Arctic conditions. The target temperatures were based on the average summer temperature ($-20^{\circ}C$), the average winter temperature ($-40^{\circ}C$) and the coldest temperature recorded (approximately $-68^{\circ}C$) in the Arctic. The nonlinear finite element analysis was performed to design an explosion-resistant profiled blast wall for use in Arctic conditions based on the behaviour of material properties at low temperatures established by performing a tensile test. The conclusions and implications of the findings are discussed.

Haplotype Diversity and Durability of Resistance Genes to Blast in Korean Japonica Rice Varieties

  • Cho, Young-Chan;Jeung, Ji-Ung;Park, Hun-June;Yang, Chang-In;Choi, Yong-Hwan;Choi, In-Bae;Won, Yong-Jae;Yang, Sae-June;Kim, Yeon-Gyu
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.205-214
    • /
    • 2008
  • Blast disease caused by the fungal pathogen, Magnaporthe oryzae, is one of the most damaging diseases in rice. The use of resistant varieties is an effective measure to control the disease, however, many resistant varieties were broken down to their resistance effects by the differentiating of new virulent isolates. This study was done to analyze the haplotypes of 31 microsatellite markers linked to five major R genes and two QTLs and to identify the alleles for the putatively novel genes related to durable resistance to blast in 56 Korean japonica and four indica varieties. The 31 microsatellite markers produced 2 to 13 alleles(mean = 5.4) and had PICi values ranging from 0.065 to 0.860(mean=0.563) among the 60 rice accessions. Cluster analysis based on allele diversities of 31 microsatellite markers grouped into 60 haplotypes and ten major clusters in 0.810 genetic similarity. A subcluster IV-1 grouped of early flowering varieties harboring Piz and/or Pi9(t) on chromosome 6 and Pita/Pita-2 gene on chromosome 12. The other subcluster V-1 consisted of four stable resistance varieties Donghae, Seomjin, Palgong and Milyang20. The analysis of putative QTLs associated with seven blast resistance genes using ANOVA and linear regression showed high significance to blast resistance across regions and isolates in the markers of two genes Piz and/or Pi9(t) and Pita/Pita-2. These results illustrate the utility of microsatellite markers to identify rice varieties is likely carrying the same R genes and QTLs and rice lines with potentially novel resistant gene.

  • PDF

Analysis of Furnace Conditions with Waste Plastics Injection into Blast Furnace (폐플라스틱의 吹入에 따른 高爐 爐況解析)

  • 허남환;백찬영;임창희
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.23-30
    • /
    • 2000
  • Since most of the waste plastics are incinerated and landfilled for the plastic treatment, the environmental friendly processes must be introduced. The plastic utilization of plastic to the blast furnace as a substitutional fuel was developed as a useful recycling method of waste plastics, and commercialized in several ironmaking company in Europe and Japan. Present study was carried out to understand the effect of plastic injection on blast furnace process continuously by using the foundry blast furnace in POSCO. The coke replacement ratio turned out to be 0.98 with the waste plastic injection up to 13.8 kg/thm of injection rate, and there were no significant effect of the kinds of injection plastics on the replacement ratio in this test operation. The permeability in the furnace became worse and the heat load in the lower part of blast furnace was increased with increasing the injection rate of waste plastics. As the rate of plastic injection were increased, the top gas utilization and shaft efficiency were also decreased from the Rist diagram analysis.

  • PDF

Study on the Calculation of the Blast Pressure of Vapor Cloud Explosions by Analyzing Plant Explosion Cases (플랜트 폭발 사례 분석을 통한 증기운 폭발의 폭압 산정법 연구)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Vapor cloud explosions show different characteristics from that caused by ordinary TNT explosives and their loading effect is similar to pressure waves. Typical methods used for blast pressure calculations are the TNT-equivalent method and multi-energy method. The TNT-equivalent method is based on shock waves, similar to a detonation phenomenon, and multi-energy method is based on pressure waves, similar to a deflagration phenomenon. This study was conducted to derive an appropriate blast pressure by applying various plant explosion cases. SDOF analysis and nonlinear dynamic analysis were performed to compare the degree of deformation and damage of the selected structural members for the explosion cases. The results indicated that the multi-energy method was more exact than the TNT-equivalent method in predicting the blast pressure of vapor cloud explosions. The blast pressure of vapor cloud explosion in plants can be more accurately calculated by assuming the charge strength of multi-energy method as 7 or 8.

Evaluation of Blast influence by Artificial Joint in Concrete Block (콘크리트 블록에서 인공절리에 따른 발파영향 평가)

  • Noh, You-Song;Min, Gyeong-Jo;Oh, Se-Wook;Park, Se-Woong;Suk, Chul-Gi;Cho, Sang-Ho;Park, Hoon
    • Explosives and Blasting
    • /
    • v.36 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • This study was conducted to evaluate the influences of the angle of artificial joints, the distance between the artificial joints and the blast hole, and the number of artificial joints on the pressure wave propagation, crack propagation, and blast wave velocity. The evaluation was conducted numerically by use of the Euler-Lagrange solver supported by the AUTODYN, which is a dynamic FEM program. As a result, it was found that the blast wave velocity was decreased most rapidly as either the distance between the artificial joint and the blast hole was decreased or the angle of the artificial joint was increased. In contrast to the case of no artificial joint, the amount of attenuation of the blast wave velocity was considerably large when an artificial joint was present. However, the effect of the number of artificial joint on the attenuation of the blast wave velocity was negligible under the given condition.

The Reliability of Blast Vibration Equation (발파 진동식의 신뢰성)

  • Kim, Soo Il;Jeong, Sang Seom;Cho, Hoo Youn
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.573-582
    • /
    • 1994
  • Blast vibration equations proposed previously are investigated. Special attention is given to the blast vibration equation which shows the best fitting to the geologic condition of Korea. The fittness of proposed blast vibration equation is analyzed and examined using many field data measured in Korea. The prediction of blast vibration equation using field data was performed by linear regression analysis. Moreover, after the prediction of each blast vibration equation, vibration velocity is recalculated on the basis of scaled distance at each equation. Reliability of regressioned blast vibration equation is observed by comparing predicted and measured velocity, which is divided into small-scale blasting of city and large-scale blasting of quarry. Based on this study, the best fitting equation to the Korean geologic condition is ROOT SCALING & CUBE ROOT SCALING proposed by USBM(United Nations Bureau of Mines). Also representative blast vibration equations depending on the different kinds of rock mass are proposed using measured and existing field data.

  • PDF

Blast vibration of a large-span high-speed railway tunnel based on microseismic monitoring

  • Li, Ao;Fang, Qian;Zhang, Dingli;Luo, Jiwei;Hong, Xuefei
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.561-569
    • /
    • 2018
  • Ground vibration is one of the most undesirable effects induced by blast operation in mountain tunnels, which could cause negative impacts on the residents living nearby and adjacent structures. The ground vibration effects can be well represented by peak particle velocity (PPV) and corner frequency ($f_c$) on the ground. In this research, the PPV and the corner frequency of the mountain surface above the large-span tunnel of the new Badaling tunnel are observed by using the microseismic monitoring technique. A total of 53 sets of monitoring results caused by the blast inside tunnel are recorded. It is found that the measured values of PPV are lower than the allowable value. The measured values of corner frequency are greater than the natural frequencies of the Great Wall, which will not produce resonant vibration of the Great Wall. The vibration effects of associated parameters on the PPV and corner frequency which include blast charge, rock mass condition, and distance from the blast point to mountain surface, are studied by regression analysis. Empirical formulas are proposed to predict the PPV and the corner frequency of the Great Wall and surface structures due to blast, which can be used to determine the suitable blast charge inside the tunnel.

Damage mechanism and stress response of reinforced concrete slab under blast loading

  • Senthil, K.;Singhal, A.;Shailja, B.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.315-338
    • /
    • 2019
  • The numerical investigations have been carried out on reinforced concrete slab against blast loading to demonstrate the accuracy and effectiveness of the finite element based numerical models using commercial package ABAQUS. The response of reinforced concrete slab have been studied against the influence of weight of TNT, standoff distance, boundary conditions, influence of air blast and surface blast. The results thus obtained from simulations were compared with the experiments available in literature. The inelastic behavior of concrete and steel reinforcement bar has been incorporated through concrete damage plasticity model and Johnson-cook models available in ABAQUS were presented. The predicted results through numerical simulations of the present study were found in close agreement with the experimental results. The damage mechanism and stress response of target were assessed based on the intensity of deformations, impulse velocity, von-Mises stresses and damage index in concrete. The results indicate that the standoff distance has great influence on the survivability of RC slab against blast loading. It is concluded that the velocity of impulse wave was found to be decreased from 17 to 11 m/s when the mass of TNT is reduced from 12 to 6 kg. It is observed that the maximum stress in the concrete was found to be in the range of 15 to $20N/mm^2$ and is almost constant for given charge weight. The slab with two short edge discontinuous end condition was found better and it may be utilised in designing important structures. Also it is observed that the deflection in slab by air blast was found decreased by 60% as compared to surface blast.