• Title/Summary/Keyword: Blast Slag Powder

Search Result 264, Processing Time 0.025 seconds

Production of Fe Amorphous Powders by Gas-atomization Process and Subsequent Spark Plasma Sintering of Fe Amorphous-ductile Cu Composite Powders Produced by Ball-milling Process (I) - I. Gas Atomization and Production of Composite Powders - (가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu 분말과의 복합화 및 SPS 거동 (I) - I. 가스분무 및 복합화 -)

  • Ryu, Ho-Jin;Lim, Jae-Hyun;Kim, Ji-Soon;Kim, Jin-Chun;Kim, H.J.
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.316-325
    • /
    • 2009
  • Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The experiment results show that the as-prepared Fe amorphous powders less than 90 $\mu$m in size has a fully amorphous phase and its weight fraction was about 73.7%. The as-atomized amorphous Fe powders had a complete spherical shape with very clean surface. Differential scanning calorimetric results of the as-atomized Fe powders less than 90 $\mu$m showed that the glass transition, T$_g$, onset crystallization, T$_x$, and super-cooled liquid range $\Delta$T=T$_x$-T$_g$ were 512, 548 and 36$^{\circ}C$, respectively. Fe amorphous powders were mixed and deformed well with 10 wt.% Cu by using AGO-2 high energy ball mill under 500 rpm.

A Study on the Strength Properties of Green Mortar Using Limestone Powder (석회석(石灰石) 미분말(微粉末)을 이용(利用)한 그린모르타르의 강도(强度) 특성(特性)에 관한 연구(硏究))

  • Jo, Byung-Wan;Choi, Ji-Sun;Kim, Kyung-Tae
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.36-42
    • /
    • 2013
  • According to the recent community-based structures enlargement, specification, and diversification. It needs appropriate construction materials in terms of intensity and environmental aspects. Thus, in manufacturing the cement using micro limestone powder which is main material. It is also expected to save energies and reduces $CO_2$, by using the blast furnace slag and fly ash which are mitigated environmental load construction materials that emerged. In this research, The durability aspect tries to be grasped considering the chemical property according to the coherence of the hydration product. Consequently, The compressive strength was measured over 30 Mpa on 3rd. In addition, according to the content of the limestone powder, the setting time is promoted. It has the feature expanded in the length change. And it is determined because the possibility of replacing the existing for construction material such as it is measured compared with the time to use the portland cement usually that flexural strength is high with the age 7 days ago, so it is sufficient.

Effects of Limestone Powder and Silica Fume on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Mortars (고강도 고함량 고로슬래그 혼합 시멘트 모르터의 수화 및 포졸란 반응에 미치는 석회석 미분말과 실리카퓸의 영향)

  • Jeong, Ji-Yong;Jang, Seung-Yup;Choi, Young-Cheol;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • To evaluate the effects of limestone powder and silica fume on the properties of high-strength high-volume ground granulated blast-furnace slag (GGBFS) blended cement concrete, this study investigated the rheology, strength development, hydration and pozzolanic reaction characteristics, porosity and pore size distribution of high-strength mortars with the water-to-binder ratio of 20, 50 to 80% GGBFS, up to 20% limestone powder, and up to 10% silica fume. According to test results, compared with the Portland cement mixture, the high-volume GGBFS mixture had much higher flow due to the low surface friction of GGBFS particles and higher strength in the early age due to the accelerated cement hydration by increase of free water; however, because of too low water-to-binder ratio and cement content, and lack of calcium hydroxide content, the pozzolanic reactio cannot be activated and the long-term strength development was limited. Limestone powder did not affect the flowability, and also accelerate the early cement hydration. However, because its effect on the acceleration of cement hydration is not greater than that of GGBFS, and it does not have hydraulic reactivity unlikely to GGBFS, compressive strength was reduced proportional to the replacement ratio of limestone powder. Also, silica fume and very fine GGBFS lowered flow and strength by absorbing more free water required for cement hydration. Capillary porosities of GGBFS blended mortars were smaller than that of OPC mortar, but the effect of limestone powder on porosity was not noticeable, and silica fume increased porosity due to low degree of hydration. Nevertheless, it is confirmed that the addition of GGBFS and silica fume increases fine pores.

Quantitative Evaluation of Free CaO in Electric Arc Furnace Reduction Slag using the Ethylene Glycol Method (에틸렌 글리콜법을 이용한 전기로 환원슬래그의 Free CaO 정량 평가에 관한 연구)

  • Kwon, Seung-Jun;Lim, Hee-Seob;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.321-327
    • /
    • 2018
  • Blast furnace slag has been actively used as a substitute for cement in the construction field with high value-added through resource recycling research. However, most of the slag cannot find a clear recycling purpose. This is because some slags contain unstable materials and are used for road-use asphalt and embankment, which are low value-added materials. Electric arc furnace reduction slag(ERS) has been reported to contain a large amount of unstable free CaO due to deoxidation and component adjustment. In this study, free CaO of ERS which is generated in Korean steelmakers is quantitatively evaluated by using ethylene glycol method. As a result of free CaO quantitative evaluation of ERS, it was confirmed that there is a big difference according to the location of each field. In addition, ERS generally existed in powder form as undifferentiated characteristics, but it was confirmed that free CaO content was different due to hydration product in aggregate form due to water treatment. In addition, free CaO is an amorphous material and its crystallization characteristics are different due to the influence of temperature when it is cooled. ERS requires a long-term aging period as it contains a lot of free CaO.

Effect of Fineness of GGBS on the Hydration and Mechanical Properties in HIGH Performance HVGGBS Cement Paste (고성능 하이볼륨 슬래그 시멘트 페이스트의 고로슬래그 미분말 분말도에 따른 수화 및 강도 특성)

  • Choi, Young Cheol;Shin, Dongcheol;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.141-147
    • /
    • 2017
  • Recently, lots of researches on concrete with high volume mineral admixtures such as ground granulated blast-furnace slag(GGBS) have been carried out to reduce greenhouse gas. The high volume GGBS concrete has advantages such as low heat, high durability, but it has a limitation in practical field application, especially low strength development in early ages. This study investigated the compressive strength and hydration characteristics of high performanc and volume GGBS cement pastes with low water to binder ratio. The effects of fineness($4,330cm^2/g$, $5,320cm^2/g$, $6,450cm^2/g$, $7650cm^2/g$) and replacement(35%, 50%, 65%, 80%) of GGBS on the compressive strength, setting and heat of hydration were analyzed. Experimental results show that the combination of high volume slag cement paste with low water to binder ratio and high fineness GGBS powder can improve the compressive strength at early ages.

A study on the Early-Strength Properties of Mortar according to the Kinds and Replacement Ratio of Mineral Admixture (혼화재 종류 및 치환율에 따른 모르터의 조기강도 특성에 관한 연구)

  • Choi, Se-Jin;Lee, Seong-Yeun;Kim, Sung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.2 s.24
    • /
    • pp.59-65
    • /
    • 2007
  • Recently, due to the increase of high-rise buildings construction, many researches for making harden of concrete earlier and remove of forms faster are being performed to reduce construction period. In this study, we compared and analysed the early strength properties of mortar according to the kinds and replacement ratio of mineral admixture to select the kinds and replacement ratio of mineral admixture of high early strength concrete. For this purpose, mortar mixtures according to the kinds(FA, MK, ZR, BFS, DM) and replacement ratio(0, 2, 4% by volume of sand) of mineral admixture were selected. From our test data, early-age compressive strength decreased in accordance with the increase of replacement ratio of fly-ash(FA) & blast furnace slag powder(BSF) and, in case of addition admixture, early-age compressive strength of with containing 4% appeared higher compared with containing 2%.

The Study of Physical Properties of Fly Ash Concrete Using Activator (자극제를 사용한 플라이애쉬 콘크리트의 물리적 특성에 관한 연구)

  • Park, Jong-Ho;Kim, Jung-Bin;Won, Eun-Mi;Park, Bong-Soon;Lee, Joung-Ah;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.565-568
    • /
    • 2008
  • Because of low early compressive strength, the usage of fly ash is subject to restriction in comparison with blast-furnace slag powder. Therefore, high amount of fly ash is reclaimed in landfill in face of better economical efficiency and more production. In this paper, the primary aim is to determine to what the basic material characteristics of fly ash concrete is affected by activator, the second aim is to check a possibility of increase in fly ash application. This study show that compared with fly ash concrete using general admixture, fly ash concrete using activator have higher early compressive strength under similar slump, air content, loss. If additional study will inspect performance of activator in various factor, expansion of application of fly ash concrete using activator can be possible.

  • PDF

Optimum Binder Ratio of Mass Concrete for LNG Tank (LNG저장시설 적용을 위한 매스콘크리트 최적 결합재 혼입율 검토)

  • Kim, Young-Jin;Park, Sang-Jun;Kim, Kyoung-Min;Lee, Eui-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.240-245
    • /
    • 2013
  • The optimum binder ratio of the low heat mass concrete for LNG tank was evaluated in the present study. Three types of binder such as OPC I, ground granulated blast-furnace slag powder were mixed and were used. Also fine particle cement and activator were used to raise an early age strength development and ground limestone was used to reduce the cost. As a result of the study, mix ratio II (30:30:40) was suitable for Bottom Center and mix ratio III(40:30:30) was suitable for Roof based on compressive strength and semi-adiabatic temperature.

Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC

  • Djamila, Boukhelkhal;Othmane, Boukendakdji;Said, Kenai;El-Hadj, Kadri
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.69-85
    • /
    • 2018
  • In order to provide sufficient stability and resistance against bleeding and segregation during transportation and placing, mineral admixtures are often used in self-compacting concrete mixes (SCC). These fine materials also contribute to reducing the construction cost and the consumption of natural resources. Many studies have confirmed the benefits of these mineral admixtures on properties of SCC in standard curing conditions. However, there are few published reports regarding their effects at elevated curing temperatures. The main objective of this study is to investigate the effect of three different mineral admixtures namely limestone powder (LP), granulated blast furnace slag (GS) and natural pozzolana (PZ) on mechanical properties and porosity of SCC when exposed to different curing temperatures (20, 40, 60 and $80^{\circ}C$). The level of substitution of cement by mineral admixture was fixed at 15%. The results showed that increasing curing temperature causes an improvement in performance at an early age without penalizing its long-term properties. However the temperature of $40^{\circ}C$ is considered the optimal curing temperature to make economical and high performance SCC. On the other hand, GS is the most suitable mineral admixture for SCC under elevated curing temperature.

Porous concrete with optimum fine aggregate and fibre for improved strength

  • Karanth, Savithri S.;Kumar, U. Lohith;Danigond, Naveen
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.305-309
    • /
    • 2019
  • Pervious concrete pavements are the need of the day to avoid urban flooding and to facilitate ground water recharge. However, the strength of pervious or porous concrete is considerably less compared to conventional concrete. In this experimental investigation, an effort is made to improve the strength of pervious concrete by adopting fibres and a small amount of fine aggregate. A porous concrete with cement to aggregate ratio of 1:5 and a water-powder ratio of 0.4 is adopted. 30% of the cement is replaced by cementitious material ground granulated blast furnace slag (GGBS) for better strength and workability. Recron fibres at a dosage of 0.5, 1.0 and 1.5% by weight of cement were included to improve the impact strength. Since concrete pavements are subjected to impact loads, the impact strength was also calculated by "Drop ball method" in addition to compressive strength. The effect of fine aggregate and recron fibres on workability, porosity, compressive and impact strength was studied. The investigations have shown that 20% inclusion of fine aggregate and 1.5% recron fibres by weight of cement give better strength with an acceptable range of porosity.