• Title/Summary/Keyword: Blast Slag Powder

Search Result 264, Processing Time 0.024 seconds

A Study on the Alkali Application of Recycled Aggregates as a Solution to Reduced Intial Intensity of Blast Furnace Slags (고로슬래그의 초기강도 저하 해결방안으로써 순환 잔골재의 알칼리 활용가치에 대한 연구)

  • Kwak, Yong-Jin;Zhao, Yang;Jung, sang-woon;Heo, Young-sun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.85-86
    • /
    • 2013
  • Weakness of fine powder of blast furnace slags includes the decrease of initial intensity and delay of setting time. To solve this problem, there has been research on the alkali activation to induce hardening using alkaline chemical. However, the use of chemicals is dangerous and not cost effective, which can be solved by using recycled aggregates, one of construction wastes. The role of alkali activator can be substituted by alkali of non-hydrated cement included in recycled aggregates. In this study, the alkaline value of recycled aggregates will be evaluated through the comparison of molarity of sodium hydroxide (NaOH).

  • PDF

Strength Development of the Concrete Incorporating Blast Furnace Slag and Recycled Aggregate as Alkali Activator (고로슬래그 미분말과 알칼리 자극재로서 순환골재를 사용하는 콘크리트의 강도발현 특성)

  • Kim, Jun-Ho;Han, Min-Cheol;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • The objective of this study is to evaluate the strength development of blast furnace slag concrete in response to the use of recycled aggregate as alkali activator. The influence of the amount of recycled aggregate was evaluated depending on different ratios of replacement for each RFA and RCA to NFA and NCA, respectively. The results indicated that as replacement of RFA and RCA increased, their strength exhibited to be increased. This was due to the fact that the latent hydraulic properties of blast furnace slag was activated by the alkali in recycled aggregates. However, in case of 365-days, it showed lower compressive strength than using NA(natural aggregates) which could be explained as the exhaustively use of alkali containing in RA. The specimens using RA showed about 90% of compressive strength comparing with specimens using NA.

Mechanical and Electrical Properties of Low-Cement Mortar Using a Large Amount of Industrial By-Products (산업부산물을 다량활용한 저시멘트 모르타르의 역학적·전기적 특성)

  • Kim, Young-Min;Im, Geon-Woo;Lim, Chang-Min;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.43-44
    • /
    • 2023
  • This study evaluated the mechanical and electrical properties of low-cement mortar using a large amount of industrial by-products to reduce carbon emissions from the cement industry. As types of industrial by-products, blast furnace slag and fly ash, which are representative materials, were used, and ultra-high fly ash was mixed and evaluated to solve the problem of initial strength loss. In addition, in order to evaluate the electrical properties, 1% of MWCNT was incorporated relative to the powder mass. As experimental items, the compressive strength was measured on the 1st, 3rd, 7th and 28th days of age, and the rate of change in electrical resistance was measured on the 28th day of age. As a result of the experiment, the initial strength of the test specimen mixed with blast furnace slag and fly ash was significantly lower than that of 100% cement, and the specimen mixed with blast furnace slag showed strength equal to that of cement at 28 days of age. As an electrical characteristic, the electrical resistance was reduced when the load was loaded, and this reason is judged to be the effect of improving the conductivity as the connection between CNTs is narrowed by the compressive load.

  • PDF

Mock-up Crack Reduction Performance Evaluation of Blast Furnace Slag Concrete Mixed with Expansive and Swelling Admixture (팽창재와 팽윤제가 혼입된 고로슬래그 콘크리트 Mock-up의 균열 저감 성능평가)

  • Sang-Hyuck Yoon;Won-Young Choi;Chan-Soo Jeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.552-559
    • /
    • 2023
  • The purpose of this study is to evaluate the crack reduction performance of blast furnace slag concrete mixed with expansive and swelling admixtures. As a basic performance test, various ingredients such as blast furnace slag fine powder (BFS), calcium sulfoaluminate (CSA), bentonite, and hydroxypropyl methyl cellulose (HPMC) were used, and the results showed that bentonite showed superior performance compared to HPMC. Afterwards, a MOCK-UP test was conducted to evaluate cracking and drying shrinkage according to the mixing ratio. As a result, when bentonite and a small amount of calcium phosphate were added, drying shrinkage was reduced and cracking was reduced. In particular, a cement mixture consisting of 30 % BFS, 1 % bentonite, and 1 % calcium phosphate showed optimal crack-free performance. It is believed that BFS concrete will contribute to compensating for shrinkage through continuous expansion activity and can be used for field applications.

Properties of High Volume Blast Furnace Slag Concrete using Recycled Aggregate with Incineration Waste Ash (소각장애시의 치환에 따른 고로슬래그 미분말 다량치환 순환골재 콘크리트의 특성)

  • Han, Cheon-Goo;Lee, Hyang-Jae;Kim, Jun-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • This study is the study desiring to solve the problem by utilizing the kinds of recycled resources considered to be troubled complementarily. Namely the reaction of potential hydraulicity of Blast Furnace Slag Powder (BS) shall be reacted with the alkali of Recycled Fine Aggregates Coarse Aggregate, it has been experimented to obtain the optimum value with the replacement ratio of incineration plant ash (WA) treated with the slaked lime as the experiment variable by solving the alkali of shortage with the Ordinary Portland Cement (OPC). As a result, the liquidity and the air volume are declined slightly as the replacement ratio of incineration plant ash WA increases, the mixture of incineration plant ash WA 1% has been analyzed to be the most suitable considering the viewpoint of effective handling of waste as the compression and the tensile strength showed the maximum value before and after 1% even though it was disadvantageous with the increase of chloride content.

Hydration Reaction Properties of Concrete With Binders and Admixtures (결합재와 혼화재 종류에 따른 콘크리트의 수화반응 특성)

  • Cho, Il-Ho;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.27-34
    • /
    • 2008
  • Recently, owing to the development of industry and improvement of building techniques, concrete structures are becoming larger and higher. This study was performed to analyze hydration reation properties of concrete with binders and admixtures, such as OPC, low heat cement, belite rich cement, slag powder, lime powder and fly ash. To investigate effects of PC type superplasticizer on the hydration, experiments involving FT-IR, XRD, DSC, SEM were analyzed at the curing age 1day, 3days and 28days. The hydration reaction rate of OPC concrete slightly delayed at the curing age 1day, blast furnace slag powder and fly ash were more effective. BRC and LHC concretes can be used for concrete structures in winter season.

Service Life Variation Considering Increasing Initial Chloride Content and Characteristics of Mix Proportions and Design Parameters (초기 염화물량의 증가와 배합 및 설계 변수 특성을 고려한 콘크리트 내구수명의 변동성)

  • Park, Sun-Kyung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.236-245
    • /
    • 2021
  • It is very important for structure designer to understand the service life variation since a wide range of service life is evaluated with changing exposure conditions and design parameters. Recently, for zero-carbon, waste plastic has been used for fuel for clinker production and this yields increase in chloride content in cement. This study is for evaluation of changing service life in the concrete with increasing initial chloride content due to usage of plastic-SRF(Solid Refuse Fuel) considering various exposure conditions and design parameters. For this, 4 levels of initial chloride content were assumed, and the service life was assessed using LIFE 365 program considering various environmental conditions including 3 levels of surface chloride content. As for analysis parameters, critical/initial chloride content, blast furnace slag powder replacement ratio, W/B(Water to Binder) ratio, cover depth, and unit mass for binder are adopted. Service life decreases with increasing initial chloride content and a significant reduction of service life is not evaluated permitting up to 1,000ppm of initial chloride content. With increasing slag replacement ratio, a longer service life can be secured since blast furnace slag powder has the effect of reducing the diffusion of external chloride ions and fixing the free chloride. It is thought that increasing initial chloride content up to European standard is helpful for enhancing sustainability and reducing carbon emission. Though the reduction in service life due to an increase in the initial chloride content is not significant in slag-concrete with low surface chloride content, careful consideration for mixing design should be paid for the exposure environment with high surface chloride content.

Physiochemical Characteristics and its Applicable Potential of Blast Furnace Slag Grout Mixtures of Sodium Silicate and Calcium Hydroxide (규산소다 및 수산화칼슘을 적용한 고로슬래그 그라우트의 적용성 및 물리화학적 특성)

  • Kim, Joung-Souk;Yoon, Nam-Sik;Xin, Zhen-Hua;Moon, Jun-Ho;Park, Young-Bok;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • Cement is one of the most commonly used materials in the construction and civil engineering industry. However, emissions of carbon dioxide generated during the production of cement have been linked to climate change and environment pollutants. In order to replace cement, many studies have been actively performed research to utilizing Blast Furnace Slag(BFS), which is a byproduct of the steel industry. This study aims to investigate the physiochemical properties of the BFS powder based grout to determine whether it can be used as an environment-friendly grout material. As a fine powder, BSF can be used instead of cement grout due to its potential hydraulic property. BSF has also been known for its ability to strengthen materials long-term and to densify the internal structure of concrete. In order to investigate the physicochemical properties of the BFS powder based grout as a grout material, in this study assessment tests were performed through a gel-time measurement, uniaxial compressive strength, and chemical resistance tests, and heavy-metal leaching test. Characteristics and advantages of the slag were studied by comparing slag and cement in various methods.

An Experimental Study on the Properties of Drying Shrinkage for Alkali-Activated Slag Mortar (알칼리 자극제를 혼입한 고로슬래그 모르타르의 건조수축 특성에 관한 실험적 연구)

  • Chun Jung-Hwan;Kim Jae-Hun;Jee Nam-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.97-100
    • /
    • 2006
  • This paper report the result of the investigation on the properties of drying shrinkage for alkali-activated slag mortar in different relative humidity Commonly we know that drying shrinkage means lost more moisture but the mechanism of drying shrinkage of alkali activated slag mortar is not entirely due to the quantity of weight loss of water from mortar. pore size distribution and the calcium silicate hydrate gel characteristics have a critical influence on the magnitude of drying shringkage to alkali activated slag mortar. For this investigation, Ca(OH)2, Na2SiO4 were as alkali activator with 5 dosages(6%, 9%, 12%, 15%, 20%) and curing condition were three different relative humidity(35%, 65%, 95%) at $20{\pm}3^{\circ}C$

  • PDF