• Title/Summary/Keyword: Blanking Process

Search Result 126, Processing Time 0.021 seconds

An Automated Process Planning System for Blanking or Piercing of Irregular-Shaped Sheet Metal Products (ll) (불규칙한 형상의 박판제품에 관한 블랭킹 및 피어싱용 공정설계 시스템(II))

  • Choi, J.C.;Kim, B.M.;Kim, C.;Kim, J.H.;Kim, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.39-48
    • /
    • 1997
  • This paper describes the process planning system of a computer-aided design of blanking and piercing for irregularly shaped sheet metal products. An approach to the system is based on knowledge-based rules. The process planning system is designed by considering several factors, such as the complexity of blank geometry, production feasibility of products, and punch profile complexity. Therefore this system which was implemented production feasibility check and strip layout module can carry out a process planning considering a production feasibility area of both internal and external features, a dimension of blanked hole, a coner and a fillet radius for irregualrly shaped sheet metal products and generate the strip layout in graphic froms. Knowledges for process planning are extracted from plasticity theories, handbooks, relevant references and empirical know- hows of experts in blanking companies. This provides powerful capabilities for process planning system of irregularly shaped sheet metal products.

  • PDF

Design of shearing process to reduce die roll in the curved shape part of fine blanking process (파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계)

  • Yong-Jun Jeon
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.

An automated process planning 8 die design using expert system for blanking or piercing of irregular shaped sheet metal products (불규칙성 박판제품의 프로그래시브 다이설계를 위한 자동화된 CAD시스템)

  • Kim, J. H.;Kim, C.;Choi, J. C.;Kim, B. M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.214-218
    • /
    • 1995
  • Much labor, an exceedingly long lead time, and the skills of experienced engineers are required for press tool design. To reduce such problems, several CAD systems for blanking or piercing have been developed. This paper describes a computer-aided design for blanking or piercing of irregularly shaped sheet metal products. An approach to the system is based on knowledge base rules. The process planning & die design system is designed by considering several factors, such as complexity of blank geometry, punch profile, and availability of press equipment and standard parts. Therefore, after checking a production feasibility for irregular shaped sheet metal products, this system which is implemented strip layout module can carry out a process planning and generate the strip layout in graphic forms. Also this system implemented die layout module can carry out a die design for each process which is obtained form the result of an automated process planning and generate parts and assembly drawing of a die set.

  • PDF

Research for The Chain Sprocket Produce by Fine Blanking (복합 Fine Blanking 공정을 이용한 Chain Sprocket 개발을 위한 연구)

  • 강태호;김인관;조광수;김영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1597-1600
    • /
    • 2003
  • Fine-Blanking is an advanced and precision stamping process, by which a component with precise geometry and smooth cut surface can be produced without any further major secondary operations. By applying the Fine-Blanking technology, the significant improvement of the component should be obvious. As the components are with good shape, smooth surface and precise size, they can be ready for assembly without any further secondary operations. The productivity is increased, the production cycle time and the component cost are significantly reduced. We apply the fine-Blanking for chain sprocket. And do Mecanical test for compress strenth. impaact, roughness, Brinell hardness, dimensional stability.

  • PDF

Development of Integrated Computer-Aided Process Planning System for Press Working Products (프레스 제품의 가공을 위한 통합적 CAPP 시스템 개발)

  • Choi, Jung-Il;Kim, Chang-Bong;Kim, Chul;Kim, Byung-Min;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.59-70
    • /
    • 1999
  • This paper deals with automated computer-aided process planning by which designers can determine operation sequences even if they have little experience in the design of press working products. The computer-aided process planning in hot forging, deep drawing and blanking requires many kinds of technical and empirical skills based on investigation and collection of the knowledge of their processes. An approach to the CAPP system is based on the knowledge-based rules and the process knowledge base consisting of process planning rules is built. The methodology adopted to develop the system is elaborated in this paper. This system has been written in AutoLISP on the AutoCAD with a personal computer and provides powerful capabilities for process planning of hot forging, cold forging, deep drawing and blanking products.

  • PDF

Analysis of dimension precision of mobile device components according to the clearance in blanking process using CAE (CAE를 활용한 모바일 디바이스 부품의 블랭킹 공정 시 클리어런스에 따른 치수정밀도 분석)

  • Kim, Tae-Min;Choi, Doo-Sun;Han, Bong-Seok;Han, Yu-Jin;Ko, Kang-Ho;Park, Jung-Rae;Park, Kyu-Bag;Lee, Jung-Woo;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.7-13
    • /
    • 2020
  • For one decades, mobile devices components were made with plastic material, but environmental problems have recently replaced them with metal materials such as aluminum. Generally, aluminum components are mostly produced through cutting, but this process has limitations such as productivity and chip recycling. For this reason, many researches are conducted to improve productivity by replacing with the forging press process for manufacturing mobile device components. After forging process, the flash is remained and it is necessary to eliminate the flash from the final shape of components. In this paper, one-sided clearance for blanking aluminum material wes selected for parameter affected to the dimensional precision. Because the clearance is the most important parameter in blanking process. Deriving the clearance of blanking process for high dimensional precision, five level of one-sided clearance is selected and CAE is used to analyze the dimensional precision for each case.

A study on properties of sector gear for seat recliner (Seat recliner용 sector gear의 fine blanking에 관한 연구)

  • Kim, Chang-ho;Kang, Soo-ho;Lee, Kwan-young;Nam, Ki-woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.99-105
    • /
    • 2010
  • This study was performed to solve the breaking problem in the fine blanking(FB) process of sector gears for car seat recliner using nickel chrome molybdenum steel(SNCM220) plate. The optimal design of embossing circle is changed to oval with labors' experiences and finite element analysis. The maximum principal stress and effective strain in a forming process are analyzed by commercial finite element software to solve the problems in embossing stage of FB process. As a result of FE analysis, the maximum principal stress in forming is lower than yield point of material. It is shown from experiments in the modified die that the formed gear does not break in embossing stage.

An Automated Process Planning System for Blanking of Stator and Rotor Parts and Irregularly-Shaped Sheet Metal Products (스테이터와 로터 및 불규칙한 박판제품의 블랭킹에 관한 공정설계 시스템)

  • Park, J.C.;Kim, B.M.;Kim, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.46-53
    • /
    • 1996
  • This paper describes some research works of computer-aided design of blanking and piercing for stator and rotor parts and irregularly shaped sheet metal by press. An approach to the system is based on knowledge based rules. The process planning system by considering a blank layout for nesting of irregularly shaped sheet metal and an improved strip layout for stator and rotor parts and irregularly shaped sheet metal is implemented. Using this system, design parameters(utilization ratio, slitting width, pitch, working order, die blank shapes) are determined and output is generated in graphic forms. Knowledges for blank layout and strip layout are extracted from the plasticity theories, handbooks, relevant references and empirical know-hows of experts in blanking companies. The implemented system provides powerful capabilities for process planning of stator and rotor parts and irregularly shaped sheet metal.

  • PDF

Effect of V-Ring Indenter on the Sheared Surface in the Fine Blanking Process of a Pawl (폴의 파인 블랭킹 공정에서 전단면에 미치는 V형 돌기의 영향에 관한 연구)

  • Kim, Yun-Joo;Kwak, Tae-Soo;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.102-108
    • /
    • 2000
  • A finite element analysis has been performed to investigate the effect of v-ring indenter on the sheared surface in the fine blanking of a pawl which is a part of the automotive safety belt and is made of S45C sheet. In the present analysis the Cockcroft and latham fracture criterion and the element kill method are used in order to simulate the blanking operation successfully. The simulation results are obtained for various positions and heights of the v-ring indenter. And the theoretical results are compared with available experimental results. It is shown that this FEM simulation result can be useful for predicting the optimal fine blanking condition of real products.

  • PDF

A study on optimized Blanking size of Brace Center Pillar using Inverse module in PAM-STAMP (PAM-STAMP Inverse 모듈을 이용한 Brace Center Pillar Blanking 사이즈 최적화에 관한 연구)

  • You S.R.;Kim T.H.;Park J.D.;Kim M.J.;Chang S.G.;Jeon E.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.349-350
    • /
    • 2006
  • PAM-STAMP is a widely used program which deals with press forming analysis. A blanking used in the press process depends on the experience of the workers. Thus it causes some waste material and demands a lot of time and many costs at the manufacturing mold. So we need to optimize of the blanking size. We have studied the optimal blanking size of the Brace Center Pillar using an Inverse module in PAM-STAMP

  • PDF