• Title/Summary/Keyword: Blade tip vortex

Search Result 149, Processing Time 0.028 seconds

A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers

  • Wang, Lian-Zhou;Guo, Chun-Yu;Su, Yu-Min;Wu, Tie-Cheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.212-224
    • /
    • 2018
  • The characteristics of the relationship between the evolution of propeller trailing vortex wake and skew angle are numerically examined based on four different five-blade David Taylor Model Basin (DTMB) model propellers with different skew angles. Numerical simulations are based on Reynolds-averaged Naviere-Stokes (RANS) equations combined with SST $k-{\omega}$ turbulence model. Results show that the contraction of propeller trailing vortex wake can be restrained by increasing skew angle and loading conditions, and root vortices fade away when the propeller skew angle increases. With the increase of the propeller's skew angle, the deformation of the hub vortex and destabilization of the tip vortices are weakening gradually because the blade-to-blade interaction becomes weaker. The transition trailing vortex wake from stability to instability is restrained when the skew increases. Furthermore, analyses of tip vortice trajectories show that the increasing skew can reduce the difference in trailing vortex wake contraction under different loading conditions.

Experimental Study on the Evolution of Tip Vortex Structures Generated by a Two-Bladed Rotor (2개의 블레이드로 구성된 회전익 끝와류들의 간섭 특성)

  • Sohn, Yong-Joon;Park, Byung-Ho;Han, Yong-Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.709-715
    • /
    • 2011
  • In order to observe the wake interaction between tip vortices generated by a two-bladed rotor with slightly different pitch angles, the velocity components of the tip vortices were measured by using a two-dimensional LDV system. It was observed that the swirl velocity components of the ensuing blade deviated from the Vatistas' n = 2 vortex model and the axial velocity components of the preceding blade deviated from the Gaussian profile. It was also found that in the wake-age range of $200^{\circ}$ to $240^{\circ}$, the filament of the ensuing blade tip vortex was stretched as result of the closing in of two vortices. The results from these observations suggest the possibility that a similar wake interaction is generated in actual rotor blades, especially, in the ones with articulated hubs.

Detailed Heat Transfer Characteristics on Rotating Turbine Blade (회전하는 터빈 블레이드에서의 열전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1074-1083
    • /
    • 2006
  • In the present study, the effect of blade rotation on blade heat transfer is investigated by comparing with the heat transfer results for the stationary blade. The experiments are conducted in a low speed annular cascade with a single stage turbine and the turbine stage is composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has a flat tip and the mean tip clearance is 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. For the experiments, the inlet Reynolds number is $Re_c=1.5{\times}10^5$, which results in the blade rotation speed of 255.8 rpm. Blade rotation induces a relative motion between the blade and the shroud as well as a periodic variation of incoming flow. Therefore, different heat/mass transfer patterns are observed on the rotating blade, especially near the tip and on the tip. The relative motion reduces the tip leakage flow through the tip gap, which results in the reduction of the tip heat transfer. However, the effect of the tip leakage flow on the blade surface is increased because the tip leakage vortex is formed closer to the surface than the stationary case. The overall heat/mass transfer on the shroud is not affected much by the blade rotation.

Numerical Prediction of Rotor Tip-Vortex Roll-Up in Axial Flights by Using a Time-Marching Free-Wake Method

  • Chung, Ki-Hoon;Na, Seon-Uk;Jeon, Wan-Ho;Lee, Duck-Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • The wake geometries of a two-bladed rotor in axial flights using a time-marching free-wake method without a non-physical model of the far wake are calculated. The computed free-wake geometries of AH-1G model rotor in climb flight are compared with the experimental visualization results. The time-marching free-wake method can predict the behavior of the tip vortex and the wake roil-up phenomena with remarkable agreements. Tip vortices shed from the two-bladed rotor can interact with each other significantly. The interaction consists of a turn of the tip vortex from one blade rolling around the tip vortex from the other. Wake expansion of wake geometries in radial direction after the contraction is a result of adjacent tip vortices begging to pair together and spiral about each other. Detailed numerical results show regular pairing phenomenon in the climb flights, the hover at high angle of attack and slow descent flight too. On the contrary, unstable motions of wake are observed numerically in the hover at low angle of attack and fast descent flight. It is because of the inherent wake instability and blade-vortex-interaction rather then the effect of recirculation due to the experimental equipment.

  • PDF

Assessment of Tip Shape Effect on Rotor Aerodynamic Performance in Hover

  • Hwang, Je Young;Kwon, Oh Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.295-310
    • /
    • 2015
  • In the present study, an unstructured mixed mesh flow solver was used to conduct a numerical prediction of the aerodynamic performance of the S-76 rotor in hover. For the present mixed mesh methodology, the near-body flow domain was modeled by using body-fitted prismatic/tetrahedral cells while Cartesian mesh cells were filled in the off-body region. A high-order accurate weighted essentially non-oscillatory (WENO) scheme was employed to better resolve the flow characteristics in the off-body flow region. An overset mesh technique was adopted to transfer the flow variables between the two different mesh regions, and computations were carried out for three different blade configurations including swept-taper, rectangular, and swept-taper-anhedral tip shapes. The results of the simulation were compared against experimental data, and the computations were also made to investigate the effect of the blade tip Mach number. The detailed flow characteristics were also examined, including the tip-vortex trajectory, vortex core size, and first-passing tip vortex position that depended on the tip shape.

Numerical Analysis on the Blade Tip Clearance Flow in the Axial Rotor (III) - Evaluation of Tip Leakage Loss and Reduction of Efficiency near Blade Tip Clearance Region of a Rotor - (축류 회전차 익말단 틈새유동에 대한 수치해석 (III) - 회전차 익말단의 누설손실과 효율저하에 대한 평가 -)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1113-1120
    • /
    • 1999
  • Leakage vortices fonned near the blade tip cause an increase of total pressure loss near the casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of tip clearance. In this study, the three-dimensional flow fields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and the of attack on the leakage vortex and overall performance, and the los9 distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss due to the tip clearance were evaluated using numerical results and approximate equations were presented to evaluate the reduction of rotor efficiency due to the tip leakage flow.

Study on Noise Reduction of an Axial Fan for Refrigerator through Modification of the Blade Tip (깃 끝단 개선을 통한 냉장고용 축류홴 저소음화에 대한 연구)

  • 김창준;전완호;정용규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.639-644
    • /
    • 2002
  • In this paper, a successful noise reduction of an axial flow fan for a refrigerator is presented. The vortex sheet generated at the blade tip of fan was suppressed by changing the shape of the tip. The structure of vortex sheet and detailed flow pattern around the fan were studied by two-dimensional LDV(Laser-Doppler Velocimetry). Effective ways to work out the result as mentioned above are to make the tip of the blade varied in thickness and to have elliptical shapes. To seek the optimal value fur the shape of new fan, several cases were examined. Through the application of the methods, the refrigerator became less noisy by 3.8 dB(A) in terms of air-borne noise produced only by the axial flow fan compared to the current one.

  • PDF

Unsteady Nature of a Tip Leakage Vortex in an Axial Flow Fan (축류팬 익단누설와류의 비정상 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.845-850
    • /
    • 2003
  • Unsteady nature of a tip leakage vortex in an axial flow fan operating at a design and off-design operating conditions has been investigated by measuring the velocity fluctuation in a blade passage with a rotating hotwire probe sensor. Two hot-wire probe sensors rotating with the fan rotor were also introduced to obtain the cross-correlation coefficient between the two sensors located in the vortical flow as well as the fluctuating velocity. The results show that the vortical flow structure near the rotor tip can be clearly observed at the quasi-orthogonal planes to a tip leakage vortex. The leakage vortex is enlarged as the flow rate is decreased, thus resulting in the high blockage to main flow. The spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region at higher flow rates than the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition.

  • PDF

Numerical Analysis of a Tip Leakage Vortex in an Axial Flow Fan (축류홴 익단누설와류의 수치적 해석)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.404-411
    • /
    • 2003
  • Three-dimensional vortical flow and separated flow topology near the casing wall in an axial flow fan having two different tip clearances have been investigated by a Reynolds-averaged Wavier-Stokes (RANS) flow simulation. The simulation shows that the tip leakage vortex formed close to the leading edge of the blade tip on suction side grows in the streamwise direction. On the casing wall, a separation line is formed upstream of the leakage vortex center due to the interference between the leakage vortex and main flow. The reverse flow is observed between the separation line and the attachment line generated downstream of the trailing edge, and increased with enlarging tip clearance. The patterns of a leakage velocity vector including a leakage flow rate are also analyzed according to two tip clearances. It is noted that the understanding of the distribution of a limiting streamline on the casing wall is very important to grasp the characteristics of the vortical flow in the axial flow fan.

  • PDF

An Analysis of the Flow Characteristics in the Tip Clearance of Axial Flow Rotor (축류 회전차 팁 틈새에서의 유동특성 해석)

  • 정재구;이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.735-745
    • /
    • 2004
  • A linear cascade of NACA 65-1810 profiles are investigated for tip leakage flow characteristics. and calculation results are compared with experimental result. STAR-CD commercial code was used to solve the three dimensional incompressible Navier-Stokes equation that was adopted for steady flow and high Reynolds $\kappa$- $\varepsilon$turbulent model. Numerical calculation of a linear cascade is carried out to investigate effect of tip clearance on pitchwise variations of velocity Profiles. and static pressure distributions on the blade surface at spanwise positions. In case of evolution of tip vortex core location. tip vortex geometry and static pressure at the center of the tip vortex core compared with experimental results. Calculation results are agreed well with the experimental data, and validated. The static pressure losses by tip leakage flow at 2% tip clearance were more than those at 1% tip clearance.