DOI QR코드

DOI QR Code

A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers

  • Wang, Lian-Zhou (College of Shipbuilding Engineering, Harbin Engineering University) ;
  • Guo, Chun-Yu (College of Shipbuilding Engineering, Harbin Engineering University) ;
  • Su, Yu-Min (College of Shipbuilding Engineering, Harbin Engineering University) ;
  • Wu, Tie-Cheng (College of Shipbuilding Engineering, Harbin Engineering University)
  • Received : 2016.10.13
  • Accepted : 2017.07.10
  • Published : 2018.03.31

Abstract

The characteristics of the relationship between the evolution of propeller trailing vortex wake and skew angle are numerically examined based on four different five-blade David Taylor Model Basin (DTMB) model propellers with different skew angles. Numerical simulations are based on Reynolds-averaged Naviere-Stokes (RANS) equations combined with SST $k-{\omega}$ turbulence model. Results show that the contraction of propeller trailing vortex wake can be restrained by increasing skew angle and loading conditions, and root vortices fade away when the propeller skew angle increases. With the increase of the propeller's skew angle, the deformation of the hub vortex and destabilization of the tip vortices are weakening gradually because the blade-to-blade interaction becomes weaker. The transition trailing vortex wake from stability to instability is restrained when the skew increases. Furthermore, analyses of tip vortice trajectories show that the increasing skew can reduce the difference in trailing vortex wake contraction under different loading conditions.

Keywords

References

  1. Baek, D.G., Yoon, H.S., Jung, J.H., Kim, S.K., Paik, B.G., 2015. Effects of the advance ratio on the evolution of a propellerwake. Comput. Fluids 118, 32-43. https://doi.org/10.1016/j.compfluid.2015.06.010
  2. Boswell, R.J., 1971. Design, cavitation performance, and open-water performance of a series of research skewed propellers. Technical report, David W. Taylor Naval Ship Research and Development Center, Bethesda, MD.
  3. Carrica, P.M., Castro, A.M., Stern, F., 2010. Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids. J. Mar. Sci. Technol. 15 (4), 316-330. https://doi.org/10.1007/s00773-010-0098-6
  4. Castro, A.M., Carrica, P.M., Stern, F., 2011. Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS. Comput. Fluids 51 (1), 35-47. https://doi.org/10.1016/j.compfluid.2011.07.005
  5. Di Felice, F., Di Florio, D., Felli, M., et al., 2004. Experimental investigation of the propeller wake at different loading conditions by particle image velocimetry. J. Ship Res. 48 (2), 168-190.
  6. Di Mascio, A., Muscari, R., Dubbioso, G., 2014. On the wake dynamics of a propeller operating in drift. J. Fluid Mech. 754, 263-307. https://doi.org/10.1017/jfm.2014.390
  7. Dubbioso, G., Muscari, R., Di Mascio, A., 2013. Analysis of the performances of a marine propeller operating in oblique flow. Comput. Fluids 75, 86-102. https://doi.org/10.1016/j.compfluid.2013.01.017
  8. Felli, M., Di Felice, F., Guj, G., et al., 2006. Analysis of the propeller wake evolution by pressure and velocity phase measurements. Exp. Fluids 41 (3), 441-451. https://doi.org/10.1007/s00348-006-0171-4
  9. Felli, M., Guj, G., Camussi, R., 2008. Effect of the number of blades on propeller wake evolution. Exp. Fluids 44 (3), 409-418. https://doi.org/10.1007/s00348-007-0385-0
  10. Felli, M., Camussi, R., Di Felice, F., 2011. Mechanisms of evolution of the propeller wake in the transition and far fields. J. Fluid Mech. 682, 5-53. https://doi.org/10.1017/jfm.2011.150
  11. Ghasseni, H., Ghadimi, P., 2011. Numerical analysis of the high skew propeller of an underwater vehicle. J. Mar. Sci. Appl. 10 (3), 289-299. https://doi.org/10.1007/s11804-011-1071-4
  12. Hunt, J.C.R., Wray, A.A., Moin, P., 1988. Eddies, streams, convergence zones in turbulent flows. Studying Turbulence Using Numerical Simulation Databases, pp. 193-208, 2.
  13. Jang, H., Mahesh, K., 2013. Large eddy simulation of flow around a reverse rotating propeller. J. Fluid Mech. 729, 151-179. https://doi.org/10.1017/jfm.2013.292
  14. Menter, F.R., 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8), 1598-1605. https://doi.org/10.2514/3.12149
  15. Muscari, R., Di Mascio, A., Verzicco, R., 2013. Modeling of vortex dynamics in the wake of a marine propeller. Comput. Fluids 73, 65-79. https://doi.org/10.1016/j.compfluid.2012.12.003
  16. Paik, B.G., Kim, J., Park, Y.H., Kim, K.S., Yu, K.K., 2007. Analysis of wake behind a rotating propeller using PIV technique in a cavitation tunnel. Ocean. Eng. 34 (3), 594-604. https://doi.org/10.1016/j.oceaneng.2005.11.022
  17. Stern, F., Wilson, R.V., Coleman, H.W., Paterson, E.G., 2001. Comprehensive approach to verification and validation of CFD simulations-part 1: methodology and procedures. J. Fluids Eng. 123 (4), 793-802. https://doi.org/10.1115/1.1412235
  18. Sun, Y., Su, Y.M., Wang, X., Hu, H., 2016. Experimental and numerical analyses of the hydrodynamic performance of propeller boss cap fins in a propeller-rudder system. Eng. Appl. Comput. Fluid Mech. 10 (1), 145-159.
  19. Toda, Y., 2008. Image based measurement around ship hull (Group discussion 2). In: Proceedings of 25th ITTC, vol. III. Fukuoka.
  20. Wang, S., Su, Y., Wang, Z., Zhu, X., Liu, H., 2014. Numerical and experimental analyses of transverse static stability loss of planning craft sailing at high forward speed. Eng. Appl. Comput. Fluid Mech. 8 (1), 44-54.
  21. Weiss, J.M., Smith, W.A., 1995. Preconditioning applied to variable and constant density flows. AIAA J. 33 (11), 2050-2057. https://doi.org/10.2514/3.12946
  22. Wilson, R., Shao, J., Stern, F., 2004. Discussion: criticisms of the "correction factor" verification method 1. J. Fluids Eng. 126 (4), 704-706. https://doi.org/10.1115/1.1780171
  23. Zhu, Z.F., 2015. Numerical study on characteristic correlation between cavitating flow and skew of ship propellers. Ocean Eng. 99, 63-71.

Cited by

  1. The Influence of Meshing Strategies on the Propeller Simulation by CFD vol.4, pp.2, 2018, https://doi.org/10.5574/jaroe.2018.4.2.078
  2. Comparative Study of Scale-resolving Simulations for Marine-Propeller Unsteady Flows vol.100, pp.None, 2019, https://doi.org/10.1016/j.icheatmasstransfer.2018.10.009
  3. A CFD study on the correlation between the skew angle and blade number of hydrodynamic performance of a submarine propeller vol.41, pp.8, 2018, https://doi.org/10.1007/s40430-019-1822-8
  4. Applying boundary element method to simulate a high-skew Controllable Pitch Propeller with different hub diameters for preliminary design purposes vol.7, pp.1, 2018, https://doi.org/10.1080/23311916.2020.1805857
  5. Investigation on the dynamic properties of propeller structure with different number of blades vol.807, pp.None, 2020, https://doi.org/10.1088/1757-899x/807/1/012035
  6. Vortex identification methods in marine hydrodynamics vol.32, pp.2, 2020, https://doi.org/10.1007/s42241-020-0022-4
  7. Numerical and Experimental Study of Flow Field between the Main Hull and Demi-Hull of a Trimaran vol.8, pp.12, 2018, https://doi.org/10.3390/jmse8120975
  8. Simulation strategy of the full-scale ship resistance and propulsion performance vol.15, pp.1, 2018, https://doi.org/10.1080/19942060.2021.1974091
  9. Modified phase average algorithm for the wake of a propeller vol.33, pp.3, 2021, https://doi.org/10.1063/5.0030829
  10. Full-scale simulation of self-propulsion for a free-running submarine vol.33, pp.4, 2018, https://doi.org/10.1063/5.0041334
  11. Experimental Investigation on Resistance Reduction for Multiple Service Conditions of Container Ship Bulbous Bow Optimization vol.37, pp.3, 2018, https://doi.org/10.2112/jcoastres-d-20-00077.1
  12. Influence of jet flow on the hydrodynamic and noise performance of propeller vol.33, pp.6, 2018, https://doi.org/10.1063/5.0051326
  13. Vibrations of simplified rudder induced by propeller wake vol.33, pp.8, 2021, https://doi.org/10.1063/5.0058968
  14. Numerical analysis of the wake dynamics of a propeller vol.33, pp.9, 2021, https://doi.org/10.1063/5.0064100
  15. Hydrodynamic Optimization of Foreship Hull-Form Using Contrastive Optimization Algorithms vol.37, pp.5, 2018, https://doi.org/10.2112/jcoastres-d-20-00167.1
  16. Numerical simulation of the wake instabilities of a propeller vol.33, pp.12, 2018, https://doi.org/10.1063/5.0070596
  17. Effects of Blade Number on the Propulsion and Vortical Structures of Pre-Swirl Stator Pump-Jet Propulsors vol.9, pp.12, 2018, https://doi.org/10.3390/jmse9121406
  18. Numerical research on the instabilities of CLT propeller wake vol.243, pp.None, 2018, https://doi.org/10.1016/j.oceaneng.2021.110305