References
- Baek, D.G., Yoon, H.S., Jung, J.H., Kim, S.K., Paik, B.G., 2015. Effects of the advance ratio on the evolution of a propellerwake. Comput. Fluids 118, 32-43. https://doi.org/10.1016/j.compfluid.2015.06.010
- Boswell, R.J., 1971. Design, cavitation performance, and open-water performance of a series of research skewed propellers. Technical report, David W. Taylor Naval Ship Research and Development Center, Bethesda, MD.
- Carrica, P.M., Castro, A.M., Stern, F., 2010. Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids. J. Mar. Sci. Technol. 15 (4), 316-330. https://doi.org/10.1007/s00773-010-0098-6
- Castro, A.M., Carrica, P.M., Stern, F., 2011. Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS. Comput. Fluids 51 (1), 35-47. https://doi.org/10.1016/j.compfluid.2011.07.005
- Di Felice, F., Di Florio, D., Felli, M., et al., 2004. Experimental investigation of the propeller wake at different loading conditions by particle image velocimetry. J. Ship Res. 48 (2), 168-190.
- Di Mascio, A., Muscari, R., Dubbioso, G., 2014. On the wake dynamics of a propeller operating in drift. J. Fluid Mech. 754, 263-307. https://doi.org/10.1017/jfm.2014.390
- Dubbioso, G., Muscari, R., Di Mascio, A., 2013. Analysis of the performances of a marine propeller operating in oblique flow. Comput. Fluids 75, 86-102. https://doi.org/10.1016/j.compfluid.2013.01.017
- Felli, M., Di Felice, F., Guj, G., et al., 2006. Analysis of the propeller wake evolution by pressure and velocity phase measurements. Exp. Fluids 41 (3), 441-451. https://doi.org/10.1007/s00348-006-0171-4
- Felli, M., Guj, G., Camussi, R., 2008. Effect of the number of blades on propeller wake evolution. Exp. Fluids 44 (3), 409-418. https://doi.org/10.1007/s00348-007-0385-0
- Felli, M., Camussi, R., Di Felice, F., 2011. Mechanisms of evolution of the propeller wake in the transition and far fields. J. Fluid Mech. 682, 5-53. https://doi.org/10.1017/jfm.2011.150
- Ghasseni, H., Ghadimi, P., 2011. Numerical analysis of the high skew propeller of an underwater vehicle. J. Mar. Sci. Appl. 10 (3), 289-299. https://doi.org/10.1007/s11804-011-1071-4
- Hunt, J.C.R., Wray, A.A., Moin, P., 1988. Eddies, streams, convergence zones in turbulent flows. Studying Turbulence Using Numerical Simulation Databases, pp. 193-208, 2.
- Jang, H., Mahesh, K., 2013. Large eddy simulation of flow around a reverse rotating propeller. J. Fluid Mech. 729, 151-179. https://doi.org/10.1017/jfm.2013.292
- Menter, F.R., 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8), 1598-1605. https://doi.org/10.2514/3.12149
- Muscari, R., Di Mascio, A., Verzicco, R., 2013. Modeling of vortex dynamics in the wake of a marine propeller. Comput. Fluids 73, 65-79. https://doi.org/10.1016/j.compfluid.2012.12.003
- Paik, B.G., Kim, J., Park, Y.H., Kim, K.S., Yu, K.K., 2007. Analysis of wake behind a rotating propeller using PIV technique in a cavitation tunnel. Ocean. Eng. 34 (3), 594-604. https://doi.org/10.1016/j.oceaneng.2005.11.022
- Stern, F., Wilson, R.V., Coleman, H.W., Paterson, E.G., 2001. Comprehensive approach to verification and validation of CFD simulations-part 1: methodology and procedures. J. Fluids Eng. 123 (4), 793-802. https://doi.org/10.1115/1.1412235
- Sun, Y., Su, Y.M., Wang, X., Hu, H., 2016. Experimental and numerical analyses of the hydrodynamic performance of propeller boss cap fins in a propeller-rudder system. Eng. Appl. Comput. Fluid Mech. 10 (1), 145-159.
- Toda, Y., 2008. Image based measurement around ship hull (Group discussion 2). In: Proceedings of 25th ITTC, vol. III. Fukuoka.
- Wang, S., Su, Y., Wang, Z., Zhu, X., Liu, H., 2014. Numerical and experimental analyses of transverse static stability loss of planning craft sailing at high forward speed. Eng. Appl. Comput. Fluid Mech. 8 (1), 44-54.
- Weiss, J.M., Smith, W.A., 1995. Preconditioning applied to variable and constant density flows. AIAA J. 33 (11), 2050-2057. https://doi.org/10.2514/3.12946
- Wilson, R., Shao, J., Stern, F., 2004. Discussion: criticisms of the "correction factor" verification method 1. J. Fluids Eng. 126 (4), 704-706. https://doi.org/10.1115/1.1780171
- Zhu, Z.F., 2015. Numerical study on characteristic correlation between cavitating flow and skew of ship propellers. Ocean Eng. 99, 63-71.
Cited by
- The Influence of Meshing Strategies on the Propeller Simulation by CFD vol.4, pp.2, 2018, https://doi.org/10.5574/jaroe.2018.4.2.078
- Comparative Study of Scale-resolving Simulations for Marine-Propeller Unsteady Flows vol.100, pp.None, 2019, https://doi.org/10.1016/j.icheatmasstransfer.2018.10.009
- A CFD study on the correlation between the skew angle and blade number of hydrodynamic performance of a submarine propeller vol.41, pp.8, 2018, https://doi.org/10.1007/s40430-019-1822-8
- Applying boundary element method to simulate a high-skew Controllable Pitch Propeller with different hub diameters for preliminary design purposes vol.7, pp.1, 2018, https://doi.org/10.1080/23311916.2020.1805857
- Investigation on the dynamic properties of propeller structure with different number of blades vol.807, pp.None, 2020, https://doi.org/10.1088/1757-899x/807/1/012035
- Vortex identification methods in marine hydrodynamics vol.32, pp.2, 2020, https://doi.org/10.1007/s42241-020-0022-4
- Numerical and Experimental Study of Flow Field between the Main Hull and Demi-Hull of a Trimaran vol.8, pp.12, 2018, https://doi.org/10.3390/jmse8120975
- Simulation strategy of the full-scale ship resistance and propulsion performance vol.15, pp.1, 2018, https://doi.org/10.1080/19942060.2021.1974091
- Modified phase average algorithm for the wake of a propeller vol.33, pp.3, 2021, https://doi.org/10.1063/5.0030829
- Full-scale simulation of self-propulsion for a free-running submarine vol.33, pp.4, 2018, https://doi.org/10.1063/5.0041334
- Experimental Investigation on Resistance Reduction for Multiple Service Conditions of Container Ship Bulbous Bow Optimization vol.37, pp.3, 2018, https://doi.org/10.2112/jcoastres-d-20-00077.1
- Influence of jet flow on the hydrodynamic and noise performance of propeller vol.33, pp.6, 2018, https://doi.org/10.1063/5.0051326
- Vibrations of simplified rudder induced by propeller wake vol.33, pp.8, 2021, https://doi.org/10.1063/5.0058968
- Numerical analysis of the wake dynamics of a propeller vol.33, pp.9, 2021, https://doi.org/10.1063/5.0064100
- Hydrodynamic Optimization of Foreship Hull-Form Using Contrastive Optimization Algorithms vol.37, pp.5, 2018, https://doi.org/10.2112/jcoastres-d-20-00167.1
- Numerical simulation of the wake instabilities of a propeller vol.33, pp.12, 2018, https://doi.org/10.1063/5.0070596
- Effects of Blade Number on the Propulsion and Vortical Structures of Pre-Swirl Stator Pump-Jet Propulsors vol.9, pp.12, 2018, https://doi.org/10.3390/jmse9121406
- Numerical research on the instabilities of CLT propeller wake vol.243, pp.None, 2018, https://doi.org/10.1016/j.oceaneng.2021.110305