• Title/Summary/Keyword: Blade shape

Search Result 478, Processing Time 0.019 seconds

A Study on the Safety Estimation of Low Pressure Torsion mounted Turbine Blade (비틀림 마운트형 저압 터빈 블레이드의 안전성 평가에 관한 연구)

  • 홍순혁;조석수;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.149-156
    • /
    • 2003
  • The estimation of fatigue limit for the component with complicated shape is difficult than of standard fatigue specimen, due to complex test equipment. So, we substitute maximum principle stress from FEM results for fatigue limit diagram made by standard fatigue specimen. Then we can estimate endurance safety of component with high trust. The static stress analysis, the nonlinear contact stress analysis and the model analysis for turbine blade is performed by ANSYS ver. 5.6. the comparison of maximum static stress around hole with maximum contact stress between pun and hole can make the cause of fracture for turbine blade clear. The difference of fatigue limit between fatigue test by standard specimen and in-service mechanical components is due to surface roughness and machining condition etc. In in-service mechanical components, Goodman diagram has to consider surface roughness for failure analysis. To find fracture mechanism of torison-mounted blade in nuclear plant. This study performs the static stress, the nonlinear contact stress and the modal analysis on torison-mounted blade with finite element method and makes the estimation for safety of turbine blade.

Prediction of Velocity of Shot Ball with Blade Shapes based on Discrete Element Analysis (이산요소해석에 기초한 블레이드 형상에 따른 숏볼의 투사속도 예측)

  • Kim, Tae-Hyung;Lee, Seung-Ho;Jung, Chan-Gi
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.844-851
    • /
    • 2018
  • In this study, the regression equation was suggested to predict of the shot ball velocity according to blade shapes based on discrete element (DE) analysis. First, the flat type blade DE model was used in the analysis, the validity of the DE model was verified by giving that the velocity of the shot ball almost equal to the theoretical one. Next, the DE analyses for curved and combined blade models was accomplished, and their analytical velocities of shot ball were compared with the theoretical one. The velocity of combined blade model was greatest. From this, the regression equation for velocity of shot ball according to the blade shape based on the DE analysis was derived. Additionally, the wind speed measurement experiment was carried out, and the experimental result and analytical one were the same. Ultimately, it was confirmed that the prediction method of the velocity of shot ball based on DE analysis was effective.

Design Optimization of QTP-UAV Prop-Rotor Blade Using ModelCenter (ModelCenter를 이용한 QTP-UAV 프롭로터 블레이드 형상 최적설계)

  • Kang, Hee Jung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.36-43
    • /
    • 2017
  • Blade design optimization of QTP-UAV prop-rotor was conducted using ModelCenter(R). Performance efficiency of the blade in hover and forward flight were adopted as the multi-objective function. Required power and pitch link force applied to constraint in each flight mode and limited lower than the value of the baseline blade. Design variables of root chord length of the blade, taper ratio, twist slope, twist angle at 0.5R of the blade, anhedral angle, parabolic coefficient of a tip shape and location of airfoil were used to generate the blade planform. CAMRAD-II, the comprehensive analysis program of rotorcraft, was used for performance analysis of prop-rotor blade in design process. Performance of the optimized blade improved 1.6% of figure of merit in hover and 13.6% of propulsive efficiency in forward flight. Pitch link force also reduced approximately 30% less than that of the baseline blade.

A Propeller Design Method with a New Blade Section : Applied to Container Ships (새로운 날개단면을 이용한 프로펠러 설계법 - 콘테이너선에 응용 -)

  • J.T. Lee;M.C. Kim;J.W. Ahn;S.H. Van;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.40-51
    • /
    • 1991
  • A Propeller design method using the newly developed blade section(KH18), which behaves better cavitation characteristics, is presented. Experimental results for two-dimensional foil sections show that the lift-drag curve and the cavitation-free bucket diagram of the new blade section are wider comparing to those of the existion NACA sections. This characteristic of the new section is particularly important for marine propeller applications since angle of attack variation of the propeller blade operating behind a non-uniform ship's wake is relatively large. A lifting surface theory is used for the design of a propeller with the developed section for a 2700 TEU container ship. Since the most suitable chordwise loading shape is not known a priori, chordwise loading shape is chosen as a design parameter. Five propellers with different chordwise loading shapes and different foil sections are designed and tested in the towing tank and cavitation tunnel at KRISO. It is observed by a series of extensive model tsets that the propeller(KP197) having the chordwise loading shape, which has less leading edge loading at the inner radii and more leading edge loading at the outer radii of 0.7 radius, has higher propulsive efficiency and better cavitation characteristics. The KP197 propeller shows 1% higher efficiency, 30% cavitation volume reduction and 9% reduction of fluctuating pressure level comparing to the propeller with an NACA section. More appreciable efficiency gain for the new blade section propeller would be expected by reduction of expanded blade area considering the better cavitation characteristics of the new blade section.

  • PDF

A Study on the Change of Shape of "Jagui" (Adze) Used in Korean Traditional Architecture (전통건축에 사용된 자귀의 형태 변화에 대한 고찰)

  • Lim, Chae-Hyun
    • Journal of architectural history
    • /
    • v.20 no.3
    • /
    • pp.23-38
    • /
    • 2011
  • The Axes and Adzes are the oldest tools since the beginning of human history which is used to cut the tree and make part of architecture such as boards, square timber etc. Nowadays, these old woodworking tools especially "Jagui(자귀)" (adze) has been almost disappeared at the working site of residential and cultural properties. It is necessary to study Korean traditional woodworking tools to keep Korean traditional skill and technology. It has been reviewed the change of shape of "Jagui(자귀)" (adze) from before Samhan (삼한) period to Joseon Dynasty through excavated relics and paintings and summarize as follows: Based on excavation relics of Dahori, both plate type blade and pocket type blade are used for "Tokki(도끼)" (axe) and "Jagui(자귀)" (adze). The excavated "Jagui(자귀)" (adze) from Jeongbaikri 356 tomb, near Pyongyang is prototype of "Jagui(자귀)" (adze) used nowdays which has almost same shape as well as the insert method of blade and handle. The auxiliary handle is inserted to blade and the main handle is inserted to the auxiliary handle which is different from the method of Chinese and Japanese "Jagui(자귀)" (adze). The length of handle of "Jagui(자귀)" (adze) until late Joseon Dynasty is short by which we assume it is used for a sitting position as hand held Jagui and from that time long handle has been introduced for a standing position which is called "Sunjagui(선자귀)". "Jagui(자귀)" (adze) has been used since the beginning of human history but it is almost disappeared at the most of woodworking site which is the crisis of Korean traditional architecture and we have to do something to keep it.

Optimal Design of Blade Shape for 200-kW-Class Horizontal Axis Tidal Current Turbines (200kW급 수평축 조류발전 터빈 블레이드 형상 최적설계)

  • Seo, JiHye;Yi, Jin-Hak;Park, Jin-Soon;Lee, Kwang-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.366-372
    • /
    • 2015
  • Ocean energy is one of the most promising renewable energy resources. In particular, South Korea is one of the countries where it is economically and technically feasible to develop tidal current power plants to use tidal current energy. In this study, based on the design code for HARP_Opt (Horizontal axis rotor performance optimizer) developed by NREL (National Renewable Energy Laboratory) in the United States, and applying the BEMT (Blade element momentum theory) and GA (Genetic algorithm), the optimal shape design and performance evaluation of the horizontal axis rotor for a 200-kW-class tidal current turbine were performed using different numbers of blades (two or three) and a pitch control method (variable pitch or fixed pitch). As a result, the VSFP (Variable Speed Fixed Pitch) turbine with three blades showed the best performance. However, the performances of four different cases did not show significant differences. Hence, it is necessary when selecting the final design to consider the structural integrity related to the fatigue, along with the economic feasibility of manufacturing the blades.

Design of the Patrol Robot with Variable Weels (가변구동 정찰로봇 시스템 설계)

  • Hwang, Sun-Myung;Jo, Ja-Yun
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.697-709
    • /
    • 2010
  • The patrol robot is a typical extreme robot for the military use. It helps soldiers by detecting and informing a potential risk instead, and warning earlier. Also, these kinds of extreme robots need good ability to conquest rough road. In this paper, we studied new mechanism through which we can get high speed on the flat road with round shape wheels, and simultaneously can get good ability to overcome rough road with blade-shape wheels. The shape of the wheels is being self-adaptively changed automatically according to the condition of the road without using additional actuator.

A Study on the Nozzle Shapes of a Cross-Flow Type Hydro Turbine for Wave Power Generation (파력발전용 횡류형 수력터빈의 노즐형상에 관한 연구)

  • Choi, Young-Do;Kim, Chang-Coo;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.30-35
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shapes on the performance and internal flow characteristics of a cross-flow type hydro turbine for wave power generation. The performance of the turbine is calculated with the variation of rotational speed for 4 types of the nozzle shape using a commercial CFD code. The results show that nozzle shape should be designed considering available head of the turbine. Best efficiencies of the turbine by 4 types of the nozzle shape do not change largely but overall performances varies mainly by the nozzle width. The output power of the cross-flow type hydro turbine changes considerably by the nozzle shape and a partial region of stage 2 in the runner blade passage produces maximum regional output power in comparison with the other runner blade passage areas.

Power Coefficient and Pressure Distributions on Blade Surfaces of a Wind Turbine with Tiltable Blades by 3D Simulations (날개 틸팅형 풍력발전기의 출력과 날개 표면의 압력분포에 대한 3차원 유동 해석)

  • Jeong, Chang-Do;Bae, Hyunwoo;Sung, Jaeyong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, a new shape of wind turbine with horizontal axis has been proposed. The proposed wind turbine has two pairs of 3 tiltable blades which minimizes air resistance during the reverse rotational direction. Under a given wind speed, 3D numerical simulations on tiltable blades were performed for various TSRs(tip-speed-ratios). Four cases of rotational position was considered to analyze the torque and wind power generated on the blade surfaces. The results show that the maximum wind power occurs at the TSR of 0.2. Due to the blade tilting, the wind passes through the blade without air resistance at the reverse rotational direction. The torque is mainly caused by pressure differences between the front and rear surface of the blade, and it becomes maximum when the blade is located at the azimuth angle of 330°.

Experimental and Computational Studies on Flow Behavior Around Counter Rotating Blades in a Double-Spindle Deck

  • Chon, Woo-Chong;Amano, Ryoichi S.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1401-1417
    • /
    • 2004
  • Experimental and computational studies were performed to determine the effects of different blade designs on a flow pattern inside a double-spindle counter rotating mower deck. In the experimental study, two different blade models were tested by measuring air velocities using a forward-scatter LDV system. The velocity measurements were taken at several different azimuth and axial sections inside the deck. The measured velocity distributions clarified the air flow pattern caused by the rotating blades and demonstrated the effects of deck and blade designs. A high-speed video camera and a sound level meter were used for flow visualization and noise level measurement. In the computational works, two-dimensional blade shapes at several arbitrary radial sections have been selected for flow computations around the blade model. For three-dimensional computation applied a non-inertia coordinate system, a flow field around the entire three-dimensional blade shape is used to evaluate flow patterns in order to take radial flow interactions into account. The computational results were compared with the experimental results.