• Title/Summary/Keyword: Blade deformation

Search Result 111, Processing Time 0.022 seconds

Performance Estimation of a Tidal Turbine with Blade Deformation Using Fluid-Structure Interaction Method

  • Jo, Chul-Hee;Hwang, Su-Jin;Kim, Do-Youb;Lee, Kang-Hee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-84
    • /
    • 2015
  • The turbine is one of the most important components in the tidal current power device which can convert current flow to rotational energy. Generally, a tidal turbine has two or three blades that are subjected to hydrodynamic loads. The blades are continuously deformed by various incoming flow velocities. Depending on the velocities, blade size, and material, the deformation rates would be different that could affect the power production rate as well as turbine performance. Surely deformed blades would decrease the performance of the turbine. However, most studies of turbine performance have been carried out without considerations on the blade deformation. The power estimation and analysis should consider the deformed blade shape for accurate output power. This paper describes a fluid-structure interaction (FSI) analysis conducted using computational fluid dynamics (CFD) and the finite element method (FEM) to estimate practical turbine performance. The loss of turbine efficiency was calculated for a deformed blade that decreased by 2.2% with maximum deformation of 216mm at the blade tip. As a result of the study, principal causes of power loss induced by blade deformation were analysed and summarised in this paper.

Beam finite element model of a vibrate wind blade in large elastic deformation

  • Hamdi, Hedi;Farah, Khaled
    • Wind and Structures
    • /
    • v.26 no.1
    • /
    • pp.25-34
    • /
    • 2018
  • This paper presents a beam finite element model of a vibrate wind blade in large elastic deformation subjected to the aerodynamic, centrifugal, gyroscopic and gravity loads. The gyroscopic loads applied to the blade are induced by her simultaneous vibration and rotation. The proposed beam finite element model is based on a simplex interpolation method and it is mainly intended to the numerical analysis of wind blades vibration in large elastic deformation. For this purpose, the theory of the sheared beams and the finite element method are combined to develop the algebraic equations system governing the three-dimensional motion of blade vibration. The applicability of the theoretical approach is elucidated through an original case study. Also, the static deformation of the used wind blade is assessed by appropriate software using a solid finite element model in order to show the effectiveness of the obtained results. To simulate the nonlinear dynamic response of wind blade, the predictor-corrector Newmark scheme is applied and the stability of numerical process is approved during a large time of blade functioning. Finally, the influence of the modified geometrical stiffness on the amplitudes and frequencies of the wind blade vibration induced by the sinusoidal excitation of gravity is analyzed.

Dynamic Characteristic of Coupled Pre-twist Blade and Shaft System (초기 비틀림각이 고려된 블레이드-축 통합 시스템의 동적 특성)

  • Lee, Hwan-Hee;Song, Ji-Seok;Na, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.659-666
    • /
    • 2012
  • A nonlinear dynamic model for the shaft-disk-blade unit is developed in this study. In this regard, the rotating flexible blade, with a pre-twist angle, attached to a rigid disk driven by a shaft which is flexible in torsion is developed. The rotor-blade coupled model is derived using Lagrange equation in conjunction with the assumed mode method to discretize the blade deformation. The equations of motion are analyzed based on the small deformation theory for the blade and shaft torsional deformation to obtain the system natural frequencies for various system parameters.

Aeroelastic deformation and load reduction of bending-torsion coupled wind turbine blades

  • Shaojun, Du;Jingwei, Zhou;Fengming, Li
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.353-368
    • /
    • 2022
  • Wind turbine blades are adjusted in real-time according to the wind conditions and blade deformations to improve power generation efficiency. It is necessary to predict and reduce the aeroelastic deformations of wind turbine blades. In this paper, the equivalent model of the blade is established by the finite element method (FEM), and the aerodynamic load of the blade is evaluated based on the blade element momentum (BEM) theory. The aeroelastic coupling model is established, in which the bending-torsion coupling effect of the blade is taken into account. The steady and dynamic aeroelastic deformations are calculated. The influences of the blade section's shear centre position and the blade's sweepback design on the deformations are analyzed. The novel approaches of reducing the twist angle of the blade by changing the shear centre position and sweepback of the blade are presented and proven to be feasible.

Flutter study of flapwise bend-twist coupled composite wind turbine blades

  • Farsadi, Touraj;Kayran, Altan
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.267-281
    • /
    • 2021
  • Bending-twisting coupling induced in big composite wind turbine blades is one of the passive control mechanisms which is exploited to mitigate loads incurred due to deformation of the blades. In the present study, flutter characteristics of bend-twist coupled blades, designed for load alleviation in wind turbine systems, are investigated by time-domain analysis. For this purpose, a baseline full GFRP blade, a bend-twist coupled full GFRP blade, and a hybrid GFRP and CFRP bend-twist coupled blade is designed for load reduction purpose for a 5 MW wind turbine model that is set up in the wind turbine multi-body dynamic code PHATAS. For the study of flutter characteristics of the blades, an over-speed analysis of the wind turbine system is performed without using any blade control and applying slowly increasing wind velocity. A detailed procedure of obtaining the flutter wind and rotational speeds from the time responses of the rotational speed of the rotor, flapwise and torsional deformation of the blade tip, and angle of attack and lift coefficient of the tip section of the blade is explained. Results show that flutter wind and rotational speeds of bend-twist coupled blades are lower than the flutter wind and rotational speeds of the baseline blade mainly due to the kinematic coupling between the bending and torsional deformation in bend-twist coupled blades.

Creep analysis of a rotating functionally graded simple blade: steady state analysis

  • Mirzaei, Manouchehr Mohammad Hosseini;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.463-472
    • /
    • 2019
  • Initial thermo-elastic and steady state creep deformation of a rotating functionally graded simple blade is studied using first-order shear deformation theory. A variable thickness model for cantilever beam has been considered. The blade geometry and loading are defined as functions of length so that one can define his own blade profile and loading using any arbitrary function. The blade is subjected to a transverse distributed load, an inertia body force due to rotation and a distributed temperature field due to a thermal gradient between the tip and the root. All mechanical and thermal properties except Poisson's ratio are assumed to be longitudinally variable based on the volume fraction of reinforcement. The creep behaviour is modelled by Norton's law. Considering creep strains in stress strain relation, Prandtl-Reuss relations, Norton' law and effective stress relation differential equation in term of effective creep strain is established. This differential equation is solved numerically. By effective creep strain, steady state stresses and deflections are obtained. It is concluded that reinforcement particle size and form of distribution of reinforcement has significant effect on the steady state creep behavior of the blade.

Shape Design of Guillotined Shear Cutters for Steel Pipes (강관의 Guillotine 전단날 형상 설계)

  • Cho Haeyong;Lee Sangmin;Lee Sungkil;Kim Yongyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.105-112
    • /
    • 2005
  • The guillotined cutting process for the pipe was studied in this paper. Until now guillotining mechanism can not be practically applied in the industries because of the deformation of sheared section around cutting area, the coarse sheared surface, and the burs. To find optimum shapes of blade, several types of blade were experimentally studied. The cutting force normal to the axial direction of the pipe was compared with the theoretical result based on the cutting energy. The experimental maximum cutting forces were very good agreement with the theoretical results. It also discussed that the design parameters of guillotining system such as the blade shape and the clearance between the blade and the die made effects to the deformation of the cutting cross section area. The results show that the guillotining method can be applicable to the pipe cutting system by optimizing the blade shape and the clearance between the blade and the die of the guillotined cutting system with respect to the sheared pipe material.

An Experimental Study on Blade Deformation of Coaxial Rotor System Using SPR(Stereo Pattern Recognition) Technique (SPR(Stereo Pattern Recognition) 기법을 이용한 동축 로터 블레이드의 변형에 대한 실험적 연구)

  • Yoo, Chanho;Yoon, Byung-Il;Chae, Sanghyun;Kim, Do-Hyung;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.597-609
    • /
    • 2020
  • These days, the coaxial rotor system is used for various purposes like UAVs, Mars exploration helicopters, and the next-generation high-speed rotorcraft. A number of research projects on aerodynamic performance of rotor systems, including the coaxial configuration have been made previously. On the contrary, research on rotor blade deformation has been mainly carried out regarding the single rotor system, where such effort has not been enough on the coaxial system. Nonetheless, in case of the coaxial system, blade deformation analysis is much more important because of the complex air flow around the rotors, and that the distance between the two rotors is a key factor affects aerodynamic performance of the entire system. For these reasons, an experimental study on rotor blade deformation of the coaxial system was conducted using the Stereo Pattern Recognition(SPR) technique, one of the state-of-the-art of photogrammetry method. In this research, a small-scale coaxial rotor test stand designed by Korea Aerospace Research Institute(KARI) was used. With the same test stand, performance of the coaxial configuration had been studied before the experimental study on blade deformation, in order to find the relation between performance and blade deformation of the rotor system. Results of the performance test and the deformation study are presented in this article.

Warping thermal deformation constraint for optimization of a blade stiffened composite panel using GA

  • Todoroki, Akira;Ozawa, Takumi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.334-340
    • /
    • 2013
  • This paper deals with the optimization of blade stiffened composite panels. The main objective of the research is to make response surfaces for the constraints. The response surface for warping thermal deformation was previously made for a fixed dimension composite structure. In this study, the dimensions of the blade stiffener were treated as design variables. This meant that a new response surface technique was required for the constraints. For the response surfaces, the lamination parameters, linear thermal expansions and dimensions of the structures were used as variables. A genetic algorithm was adopted as an optimizer, and an optimal result, which satisfied two constraints, was obtained. As a result, a new response surface was obtained, for predicting warping thermal deformation.

The Aerodynamic Characteristics of Shape Deformation of Airfoil according to Field Repair of MW-Class Wind Turbine Blade (MW급 풍력 Blade의 Field수리로 인한 Airfoil의 형상 변형에 따른 공력특성)

  • Yu, Hong-Seok;Lee, Jang-Chang
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.654-658
    • /
    • 2014
  • 풍력발전은 재생에너지로써 유망한 대체 에너지원으로 각광받고 있으며, 국내에서는 이미 영덕, 영양 등의 풍력단지가 가동 중에 있다. 그러나 장기간 사용되어온 터빈이 반 이상이며, 그 중에서도 바람의 영향을 많이 받는 블레이드는 끝단 Tip이 벌어지는 파손이 발생하곤 한다. Blade Field의 유지보수를 통해 수명연장이 가능하나, 형상변화로 공력특성에 영향을 미치게 된다. 본 연구에서는 MEXICO 터빈용 블레이드의 Tip부분에 대해서 EDISON을 활용하여, 수리로 인해 변경된 Blade의 공력특성 변화를 분석하였다. 형상변경은 상용 프로그램 Pontwise로 작업했으며, 익형 주위의 유동을 2D비압축성 유동으로 가정하고 EDISON CFD의 2D_Incomp-2.1_P solver를 수치해석을 수행하였다.

  • PDF