• Title/Summary/Keyword: Blade Joint

Search Result 35, Processing Time 0.029 seconds

Investigation on Research Trends for Separation of Wind Turbine Blade (풍력 블레이드 분리를 위한 연구 동향 분석)

  • Wooseong Jeong;Hyunbumm Park
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.68-74
    • /
    • 2023
  • Research is being actively conducted to increase energy production by increasing the length of wind turbine blades. However, it is difficult to manufacture and transport large-scale blades. Various studies are being conducted on the concept of separate wind turbine blades considering transportation methods and maintenance. In this study, various methods of dividing blades and assembling the divided blades were reviewed. The position of the division when the blades are divided was analyzed.

Bird Strike Analysis and Test Report of Dummy and Real Blade Antenna (더미 및 실 블레이드 안테나 조류충돌 해석 및 시험)

  • Jeong, Hanui
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.24-31
    • /
    • 2018
  • The objectives of this study is to carry out Bird strike analysis and tests of a blade antenna of aircraft. FEMs (Finite Element Models) were created for the analysis, while dummy and real antennas were used for the bird strike tests. In the analysis, birds were modeled with SPH (Smooth Particle Hydrodynamics) method, and the behaviors of the bird, antenna, and joint structure between antenna and aircraft fuselage were simulated with the FSI (Fluid-Structure Interaction) method. After the bird strike test was performed, the results of the analysis and test showed that they had a positive relationship. The damage of antenna and bolted joint was checked, and the structural integrity of the airframe was proved.

Structural Design and Experimental Investigation of A Medium Scale Composite Wind Turbine Blade Considering Fatigue life

  • Kong, C.D.;Bang, J.H.;Jeong, J.C.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.88-89
    • /
    • 2002
  • The aims of this study is to realize the structural design for development of a medium scale E-glass/epoxy composite wind turbine blade for a 750KW class horizontal axis wind turbine system. In this study, the various load cases specified by the IEC61400-1 international specification and GL Regulations for the wind energy conversion system were considered, and a specific composite structure configuration which can effectively endure various loads such as aerodynamic and centrifugal loads, loads due to accumulation of ice, hygro-thermal and mechanical loads was proposed. In order to evaluate the structure, the structural analysis for the composite wind turbine blade were peformed using tile finite element method(FEM). In the structural design, the acceptable blade structural configuration was determined through the parametric studies, and the most dominant design parameters were confirmed. In the stress analysis using the FEM, it was confirmed that the blade structure was safe and stable in any various load cases Moreover the safety of the blade root joint with insert bolts, newly devised in this study, was checked against the design fond and the fatigue.

  • PDF

Stress Analysis of the Blade Joint for a Small Wind Turbine (소형풍력터빈 블레이드 체결부의 응력해석)

  • Kim, Deok-Su;Jung, Won-Young;Jung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.117-124
    • /
    • 2012
  • In this paper, an analysis of the joint that transmits power from the blades to the generator is performed using the FEM (finite element method). The mode shapes and natural frequencies were extracted using experimental modal analysis in order to establish the FEM model. Then, the model was verified by comparing the mode shapes and natural frequencies to those obtained from the ANSYS modal analysis. Dynamic stress analysis was performed at the rated and limited wind speeds considering the wind load and gravity.

Aerodynamic and Structural Design for Medium Size Horizontal Axis Wind Turbine Rotor Blade with Composite Material (복합재를 이용한 수평축 풍력터빈 회전 날개의 공력 및 구조설계에 관한 연구)

  • 공창덕;방조혁;오동우;김기범;김학봉
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.12-21
    • /
    • 1997
  • Nowadays, non-pollution energy sources have been strongly needed because of the exhaustion of fossil fuels and serious environmental problems. Because wind energy can be enormously obtained from natural atmosphere, this type of energy has lots of advantages in a economic and pollution point of view. This study has established the aerodynamic and structural design procedure of the rotor blade with an appropriate aerodynamic performance and structural strength for the 500㎾ medium class wind turbine system. The aerodynamic configuration of the rotor blade was determined by considering the wind condition in the typical local operation region, and based on this configuration aerodynamic performance analysis was performed. The rotor blade has the shell-spar structure based on glass/epoxy composite material and is composed of shank including metal joint parts and blade. Structural design was done by the developed design program in this study and structural analysis, for instance stress analysis, mode analysis and fatigue life estimation, was performed by the finite element method. As a result, a medium scale wind turbine rotor blade with starting characteristics of 4m/s wind speed, rated power of 500㎾ at 12m/s wind speed and over 20 years fatigue life has been designed.

  • PDF

The Role of Angled Blade Plate in Treatment of Bone Tumor Occurred in Femur (대퇴골 골종양의 치료에 있어서의 Angled Blade Plate의 역할)

  • Kim, Tai-Seung;Kang, Chang-Nam;Chung, Ung-Seo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.11 no.2
    • /
    • pp.175-182
    • /
    • 2005
  • Purpose: Bone tumor occurred in femur frequently involve proximal intertrochanteric region or distal metaphyseal region. Sometimes, the pathologic fracture can happen according to the size of tumor due to the substantial biomechanical stresses. Therefore, the prognosis can be improved biomechanically by the angled blade plate considering the anatomic configuration after the excision of tumor. Materials and Methods: Between October 1991 and April 2005, there were a total of 16 patients(17 cases) who were treated by the excision of tumor and internal fixation with the angled blade plate for bone tumor occurred in femur. After the excision of tumor, we filled the cavity by bone graft in 11 cases and bone cement in 6 cases. The internal fixation was used by angled blade plate in all cases. Result: The average follow-up time was 55.5 months(6-144 months) in 16 patients(17 cases). No metal failure occurred after the operation. Reoperation was performed in 4 cases due to tumor recurrence, and the internal fixation was firm until that. Conclusion: The angled blade plate can prevent the fracture until grafted bone incorporated to host bone, and protect fragile connection between cement and host bone.

  • PDF

Analysis of Micro-Doppler Signatures from Rotating Propellers Using Modified HHT Method (수정된 HHT 기법을 이용하여 회전하는 프로펠러 날개에 의한 마이크로 도플러 신호의 해석)

  • Park, Ji-Hoon;Choi, Ik-Hwan;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1100-1106
    • /
    • 2012
  • This paper has presented the analysis of the micro-Doppler signatures scattered from the blades of the rotating propeller using the modified HHT method, one of the joint time-frequency analysis methods. The field scattered from the blade edge of the propeller was calculated using equivalent current method(ECM). After the acquisition of the scattered field data in the time domain, the modified HHT method was applied to analyze the micro-Doppler signature. The analysis results showed not only a good agreement with the realistic dynamic characteristic of the blade but also sinusoidally varing characteristics of the micro-Doppler signatures generated from rotating objects. It could be concluded that the joint time-frequency analysis via the modified HHT provided the discriminative characteristics for recognizing a small aircraft target with small RCS value.

Study on Propeller Grinding Applied by a High Stiffness Robot (고감성 로봇을 이용한 프로펠러 연삭에 관한 연구)

  • Lee, M.K.;Park, B.O.;Park, K.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.56-65
    • /
    • 1997
  • This paper presents the robot program for propeller grinding. A robot manipulator is constructed by combining a parallel and a serial mechanism to increase high sitffness as well as workspace. The robot program involves inverse/direct kinematics, velocity mapping, Jacobian, and etc. They are cerived in efficient formulations and implemented in a real time control. A velocity control is used to measure the hight of a propeller blade with a touch probe and a position control is performed to grind the surface of the blade.

  • PDF

FBG sensor system for condition monitoring of wind turbine blades (풍력터빈 블레이드 상태 감시용 광섬유격자 센서시스템)

  • Kim, Dae-Gil;Kim, Hyunjin;Song, Minho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.75-82
    • /
    • 2013
  • We propose a fiber grating sensor system for condition monitoring of large scale wind turbine blades. For the feasibility test of the proposed sensor system, a down-scaled wind turbine has been constructed and experimented. Fiber grating sensors were attached on a blade surface for distributed strain and temperature measurements. An optical rotary joint was used to transmit optical signals between the FBG sensor array and the signal processing unit. Instead of broadband light source, we used a wavelength-swept fiber laser to obtain high output power density. A spectrometer demodulation is used to alleviate the nonlinear wavelength tuning problem of the laser source. With the proposed sensor system we could measure dynamic strain and temperature profiles at multi-positions of rotating wind turbine blades.

Structural Design and Experimental Investigation of A Medium Scale Composite Wind Turbine Blade Considering Fatigue Life (피로 수명을 고려한 중형 복합재 풍력터빈 블레이드의 구조설계 및 실험 평가)

  • Gong, Chang Deok;Bang, Jo Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.23-30
    • /
    • 2003
  • In this study, the various load cases by specified by the IEC61400-1 international specification and GL Regulations for the wind energy conversion system were considered, and a specific composite structure configuration which can effectively endure various loads was proposed. In order to evaluate the structure, the structural analysis for the composite wind turbine blade was performed using the finite element method(FEM). In the structural design, the acceptable configuration of blade structure was determined through the parametric studies, and the most dominant design parameters were confirmed. In the stress analysis using the FEM, it was confirmed that the blade structure was safe and stable for all the considerd load cases. Moreover the safety of the blade root joint with insert bolts, newly devised in this study, was checked against the design loads and also the fatigue loads. The fatigue life for operating more than 20 years was estimated by using the well-known S-N linear damage rule, the load spectrum and Spera's empirical equations. The full-scale static test was performed under the simulated aerodynamic loads. from the experimental results, it was found that the designed blade had the structural integrity. Furthermore the measured results were agreed with the analytical results such as deflections, strains, the mass and the radial center of gravity. The studied blade was successfully certified by an international institute, GL, of Germany.