• 제목/요약/키워드: Blade Angle

검색결과 601건 처리시간 0.023초

수직축 풍력터빈에 관한 연구 (A Study of Vertical Axis Wind Turbine)

  • 박정철
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권5호
    • /
    • pp.389-395
    • /
    • 2017
  • 본 논문은 주 블레이드 각도와 보조 블레이드 각도를 변화 주어서 ANSYS 유동해석 시뮬레이션 프로그램을 이용하여 최적의 조건을 찾고자 하였다. $45^{\circ}$로 주 블레이드 각도를 변경한 Shape 4는 주 블레이드 각도를 $0^{\circ}$로 한 Shape들 보다 효율은 110% ~ 250% 증가하고, 출력은 157.2% ~ 263.2% 증가했다. 그리고 주 블레이드의 Fin 크기를 2배 크게 변경한 Shape 5의 출력은 Shape 4에 비해 27.5%, Shape 1에 비해 70.8% 증가하였다. Case 구조에서 주 블레이드 형상이 Shape 1로서 동일한 경우에는 Case 1은 Case 2보다 효율은 15.4%, 출력은 13.3% 증가하였다. 그리고 $45^{\circ}$로 보조 블레이드 각도를 한 경우, 주 블레이드 형상이 핀 형태보다 벤디드 형태가 우수하였다. Case 4는 Case 1보다 47%, Case 3보다 13.6% 출력이 증가하였고, 효율은 Case 1보다 46.7%, Case 3보다 15.8% 증가하였다.

피치각과 날개 길이 변화에 따른 축류팬의 성능 및 소음 특성에 관한 실험적 연구 (Effect of pitch angle and blade length on an axial flow fan performance)

  • 전성택;조진표
    • 한국산학기술학회논문지
    • /
    • 제14권7호
    • /
    • pp.3170-3176
    • /
    • 2013
  • 본 연구에서는 피치각 가변형 축류팬의 성능(정압별 풍량, 소비전력)과 소음특성을 실험으로 구하였다. 피치각은 $20^{\circ}{\sim}45^{\circ}$$5^{\circ}$ 간격으로 6개의 각도를 변화시켜 가면서 측정 하였고 팬 날개는 동일한 에어포일 형상으로 길이는 80 mm, 90 mm, 100 mm, 110 mm, 120 mm로 변경하여 실험을 수행하였다.

터빈블레이드의 5축 고속가공에서 최적가공경로의 선정 (Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade)

  • 임태순;이채문;김석원;이득우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.53-60
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries brought new technological challenges, related to the growing complexity of products and new geometry models. High speed machining using 5-Axis milling machine is widely used for 3D sculptured surface parts. 5-axis milling of turbine blade generates the vibration, deflection and twisting caused from thin and cantilever shape. So, the surface roughness and the waviness of workpiece are not good. In this paper, The effects of cutter orientation and lead/tilt angle in 5-Axis high speed ball end-milling of turbine blade were investigated to improve the geometric accuracy and surface integrity. The experiments were performed at lead/tilt angle $15^{\circ}$ of workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vertical inward. Workpiece deflection, surface roughness and machined surface were measured with various cutter orientations such as cutting direction, and lead/tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle.

  • PDF

무인헬리콥터 로터 블레이드의 구조적 진동특성 분석 및 시험에 관한 연구 (Study on the Analysis of Structural Dynamic Characteristics and Modal Test of Unmanned Helicopter Rotor Blades)

  • 정경렬;이종범;한성호;최길봉
    • 소음진동
    • /
    • 제5권2호
    • /
    • pp.215-224
    • /
    • 1995
  • In this paper, the three-dimensional finite element model is established to investigate the structural dynamic characteristics of rotor blade using a finite element analysis. Six natural frequencies and mode shapes are calculated by computer simulation. The first three flapping modal frequencies, the first two lead-lag modal frequencies, and the first feathering modal frequency are validated through comparison with the modal test results of the fixed rotor blade. The computer simulation results are found in good agreement with experimentally measured natural frequencies. The important results are obtained as follows: (1) Natural frequencies are changed due to the variation of rotational speed and fiber angle of rotor blade, (2) Weak coupling between flapping mode shape and lead-lag mode shape are detected, (3) Centrifugal force has more effect on flapping modal frequency than lead-lag modal frequency.

  • PDF

전향도가 큰 축류터보기계의 블레이드 주위의 유동해석 (Analysis of Two-Dimensional Flow around Blades with Large Deflection in Axial Turbomachine)

  • 원승호;손병진;최상경
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.229-240
    • /
    • 1991
  • 본 연구에서 사용한 이론과 제시된 방법의 타당성을 검토하기 위하여 익열 간 극이 무한대인 단일 익형 주위의 유동장을, 최근에 개발된 계산방법인 Lambda방법을 사용한 Dadone의 해석결과와 비교하였고, 범용의 압축기 익형인 NACA65게열 익열 유동 에 대한 Herrig의 실험값, 그리고 미분해석에 의한 점성-비점성 상호작용 방법을 사용 한 Hansen의 계산값고, 이들 조건과 동일한 상태에서 본 연구에서 제시한 방법으로 계 산한 결과와 만족할 만한 일치를 얻었다.

수평축 풍력터빈 블레이드의 공력해석 및 설계에 관한 연구 (A Study on Design of Wind Turbine Blade and Aerodynamic Analysis)

  • 김정환;김범석;윤수한;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.631-638
    • /
    • 2003
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio, structure, a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method. This process is programed by delphi-language. The program has any input values such as tip speed ratio, blade length, hub length, a section of shape and max lift-to-drag ratio. The program displays chord length and twist angle by input value and analyzes performance of the blade.

  • PDF

재생 펌프의 날개 각도에 따른 성능 변화에 관한 실험적 연구 (Experimental Investigation on the Hydraulic Performance of the Regenerative Pump According to the Blade Angle)

  • 유일수;최원철;박무룡;이공훈
    • 한국유체기계학회 논문집
    • /
    • 제16권5호
    • /
    • pp.5-10
    • /
    • 2013
  • The regenerative pump is a kind of turbomachine which is capable of developing high pressure rise at relatively lower flow rates compared to the centrifugal and axial pumps. Although the efficiency of regenerative pumps is much lower than other turbomachines, still they have been widely used in many industrial applications for working at low specific speeds. There are some theoretical models to analysis the pump performance, however, the effect of the blade angle on the pump performance has not been covered in any model to date. In the present study, experimental study on the regenerative pump performance according to the impeller blade angle and its shape has been carried out. The straight radial blades with forward, backward and chevron blades which have inclined angles of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ were tested. The pump performance characteristics as the pressure head, efficiency were obtained depending on the flow rate for every impeller, and their results, expressed in appropriate non-dimensional coefficients, were compared and analysed in detail. From the experimental results, it was found that the pressure head and the efficiency depend strongly on the blade angles as well as the blade type. These experimental data has made it possible to better understand the effects of the blade angle on the pump performance, and widen the applicability of the current performance analysis and design models with including the effect of blade angles.

수직축 풍력터빈의 유동해석에 관한 연구 (A Study on Air Flow Analysis in Vertical-axis Wind Turbine)

  • 이기선;박정철
    • 전기학회논문지P
    • /
    • 제66권4호
    • /
    • pp.158-162
    • /
    • 2017
  • This paper did basic study on the vertical-axis wind turbine. Namely, This paper was try to find the optimum conditions by using the ANSYS CFX simulation program through the changes of the main-blade angle and sub-blade angle. Main-blade Shape #4 angle $45^{\circ}$ compared to others Shape angle $0^{\circ}$ was increased by 157.2[%] to 263.2[%] in the power output and was increased by 110[%] to 250[%] in the power coefficient. Also, when the Shape #5 Fin length of main-blade doubles, because the power output was 70.8[%] compared to Shape #1 and 27.5[%] compared to Shape #4, and the power coefficient was 60[%] compared to Shape #1 and 28.6[%] compared to Shape #4, the power output and the power efficiency were rather reduced. The output current of Shape #4 was increased 109.9[%] compared to Shape #1 and increased 250[%] compared to Shape #5, and The output voltage of Shape #4 was increased 22.5[%] compared to Shape #1 and increased 3.7[%] compared to Shape #4.

은 잉크를 이용한 그라비아 오프셋의 전극인쇄에서 닥터링 공정의 영향 (The Effects of Doctoring Process in Gravure Off-set Printing on Patterning of Electrodes with Ag Ink)

  • 최기성;박진석;송정근
    • 한국전기전자재료학회논문지
    • /
    • 제26권6호
    • /
    • pp.462-467
    • /
    • 2013
  • In this paper, we analyzed the effects of doctoring process on the patterns of Ag ink in gravure off-set printing. The parameters of doctoring process were the angle and the pressure, which was represented by the depth of blade movement to the gravure roll, of doctor blade to the surface of gravure roll, and the angle of patterns engraved on the gravure roll to the doctor blade moving direction. The proper parameters were extracted for the fine patterns and they were 15 mm for the pressure, $60^{\circ}$ for the blade angle. And the angle of patterns with respect to the blade movement should be less than $40^{\circ}$ for the best results. The gravure off-set printing with the above parameters was carried out to print gate electrodes and scan bus lines of OTFT-backplane for e-paper. The line width of $50{\mu}m$ was successfully obtained. The thickness of electrodes was $2.5{\mu}m$ and the surface roughness was $0.65{\mu}m$ and the sheet resistance was $15.8{\Omega}/{\Box}$.

풍 하중과 Pitch각 변화에 따른 풍력 터빈 블레이드의 안정성 해석 (Stability Analysis of a Wind Turbine Blade Considering Wind Force and Variation of Pitch Angle)

  • 권승민;강문정;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제22권12호
    • /
    • pp.1164-1171
    • /
    • 2012
  • Recently, researches related to the green energy generation systems have increased significantly. Among them wind turbines are the most spread practical green energy generation systems. In order to enhance the power generation capacity of the wind turbine blade, the length of wind turbine blade has increased. It might cause undesirable excessive dynamic loads. Therefore dynamic characteristics of a wind turbine blade system should be identified for a safe design of the system. In this study, the equations of motion of a wind turbine blade system undergoing gravitational force are derived considering wind force and pitch angle. Effects of wind speed, variation of pitch angle of the wind turbine blade, rotating speed, and the blade length on its stability characteristics are investigated.