• 제목/요약/키워드: Black-Litterman model

검색결과 7건 처리시간 0.019초

ETF와 블랙리터만 모형을 이용한 인핸스드 인덱스 전략 (Enhanced Indexation Strategy with ETF and Black-Litterman Model)

  • 박기경;이영호;서지원
    • 경영과학
    • /
    • 제30권3호
    • /
    • pp.1-16
    • /
    • 2013
  • In this paper, we deal with an enhanced index fund strategy by implementing the exchange trade funds (ETFs) within the context of the Black-Litterman approach. The KOSPI200 index ETF is used to build risk-controlled portfolio that tracks the benchmark index, while the proposed Black-Litterman model mitigates estimation errors in incorporating both active investment views and equilibrium views. First, we construct a Black-Litterman model portfolio with the active market perspective based on the momentum strategy. Then, we update the portfolio with the KOSPI200 index ETF by using the equilibrium return ratio and weighted averages, while devising optimization modeling for improving the information ratio (IR) of the portfolio. Finally, we demonstrate the empirical viability of the proposed enhanced index strategies with KOSPI 200 data.

K-shape 군집화 기반 블랙-리터만 포트폴리오 구성 (Black-Litterman Portfolio with K-shape Clustering)

  • 김예지;조풍진
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.63-73
    • /
    • 2023
  • This study explores modern portfolio theory by integrating the Black-Litterman portfolio with time-series clustering, specificially emphasizing K-shape clustering methodology. K-shape clustering enables grouping time-series data effectively, enhancing the ability to plan and manage investments in stock markets when combined with the Black-Litterman portfolio. Based on the patterns of stock markets, the objective is to understand the relationship between past market data and planning future investment strategies through backtesting. Additionally, by examining diverse learning and investment periods, it is identified optimal strategies to boost portfolio returns while efficiently managing associated risks. For comparative analysis, traditional Markowitz portfolio is also assessed in conjunction with clustering techniques utilizing K-Means and K-Means with Dynamic Time Warping. It is suggested that the combination of K-shape and the Black-Litterman model significantly enhances portfolio optimization in the stock market, providing valuable insights for making stable portfolio investment decisions. The achieved sharpe ratio of 0.722 indicates a significantly higher performance when compared to other benchmarks, underlining the effectiveness of the K-shape and Black-Litterman integration in portfolio optimization.

블랙리터만 모형을 이용한 섹터지수 투자 전략 (Sector Investment Strategy with the Black-Litterman Model)

  • 송정민;이영호;박기경
    • 경영과학
    • /
    • 제29권1호
    • /
    • pp.57-71
    • /
    • 2012
  • In this paper, we deal with a sector investment strategy by implementing the black-litterman model that incorporates expert evaluation and sector rotation momentum. Expert evaluation analyzes the relative performance of the industry sector compared with the market, while sector rotation momentum reflects the price impact of significant sector anomaly. In addition, we consider the portfolio impact of sector cardinality and weight constraints within the context of mean-variance portfolio optimization. Finally, we demonstrate the empirical viability of the proposed sector investment strategy with KOSPI 200 data.

지능형 전망모형을 결합한 로보어드바이저 알고리즘 (Robo-Advisor Algorithm with Intelligent View Model)

  • 김선웅
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.39-55
    • /
    • 2019
  • 최근 은행과 증권회사를 중심으로 다양한 로보어드바이저 금융상품들이 출시되고 있다. 로보어드바이저는 사람 대신 컴퓨터가 포트폴리오 자산배분에 대한 투자 결정을 실행하기 때문에 다양한 자산배분 알고리즘이 활용되고 있다. 본 연구에서는 대표적 로보어드바이저 알고리즘인 블랙리터만모형의 강점을 살리면서 객관적 투자자 전망을 도출할 수 있는 지능형 전망모형을 제안하고 이를 내재균형수익률과 결합하여 최종 포트폴리오를 도출하는 로보어드바이저 자산배분 알고리즘을 새로이 제안하며, 실제 주가자료를 이용한 실증분석 결과를 통해 전문가의 주관적 전망을 대신할 수 있는 지능형 전망모형의 실무적 적용 가능성을 보여주고자 한다. 그동안 주가 예측에서 우수한 성과를 보여주었던 기계학습 방법 중 SVM 모형을 이용하여 각 자산별 기대수익률에 대한 예측과 예측 확률을 도출하고 이를 각각 기대수익률에 대한 투자자 전망과 전망에 대한 신뢰도 수준의 입력변수로 활용하는 지능형 전망모형을 제안하였다. 시장포트폴리오로부터 도출된 내재균형수익률과 지능형 전망모형의 기대수익률, 확률을 결합하여 최종적인 블랙리터만모형의 최적포트폴리오를 도출하였다. 주가자료는 2008년부터 2018년까지의 132개월 동안의 8개의 KOSPI 200 섹터지수 월별 자료를 분석하였다. 블랙리터만모형으로 도출된 최적포트폴리오의 결과가 기존의 평균분산모형이나 리스크패리티모형 등과 비교하여 우수한 성과를 보여주었다. 구체적으로 2008년부터 2015년까지의 In-Sample 자료에서 최적화된 블랙리터만모형을 2016년부터 2018년까지의 Out-Of-Sample 기간에 적용한 실증분석 결과에서 다른 알고리즘보다 수익과 위험 모두에서 좋은 성과를 기록하였다. 총수익률은 6.4%로 최고 수준이며, 위험지표인 MDD는 20.8%로 최저수준을 기록하였다. 수익과 위험을 동시에 고려하여 투자 성과를 측정하는 샤프비율 역시 0.17로 가장 좋은 결과를 보여주었다. 증권계의 애널리스트 전문가들이 발표하는 투자자 전망자료의 신뢰성이 낮은 상태에서, 본 연구에서 제안된 지능형 전망모형은 현재 빠른 속도로 확장되고 있는 로보어드바이저 관련 금융상품을 개발하고 운용하는 실무적 관점에서 본 연구는 의의가 있다고 판단된다.

부동산 유동화 NFT와 FT 분할 거래 시스템 설계 및 구현 (Real Estate Asset NFT Tokenization and FT Asset Portfolio Management)

  • 김영근;김성환
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권9호
    • /
    • pp.419-430
    • /
    • 2023
  • 대체 불가능 토큰 (NFT: non-fungible Token)은 분할할 수 없다는 고유한 특징을 가지고 있다. 현재 NFT는 디지털 콘텐츠에 대한 소유권 증명 이상의 용도가 명확하지 않고, 토큰의 유동성이 거의 없으며, 이로 인한 가격의 예측이 어렵다. 현실에서의 부동산은 대개 가격이 매우 높은 특징으로 인해 투자 진입장벽이 매우 높다. 현물 부동산을 NFT 화하고, FT (fungible token)으로 분할하면 유동성의 증가, 접근성의 증가에 따른 투자자 커뮤니티 볼륨의 증가를 기대할 수 있다. 본 논문은 일반 투자자들이 개별적으로 구매하기 어려운 현물 부동산을 대량의 FT로 분할하고 이를 Black Litterman 모델 기반의 Portfolio 투자 인터페이스를 통해 투자할 수 있는 시스템을 설계하고 구현하였다. 이를 위해, 현물 부동산을 담보로 페깅하고, 보안적으로 안전한 블록체인인 NFT로 발행한다. 상시 변경되는 부동산 가격을 모니터링하기 위한 오라클을 사용하여, 외부 부동산 정보를 블록체인에 반영할 수 있도록 하였다. 현물 부동산 가격을 그대로 유지하고 있는 NFT를 낮은 가격의 대량 FT로 분할함으로써, 큰 유동성을 제공하고 가격 변동성 제한을 두었다. 이를 통해, 높은 가격으로 인해 투자하기 어려웠던 일반 소액 투자자들이 쉽게 투자할 수 있도록 하였다. 또한 소액 투자로 여러 개의 복수 현물 부동산에 투자하기 위한 효과적인 포트폴리오 구성을 위한 자산 포트폴리오 인터페이스를 구현하였다. 이는 Black Litterman 모델을 활용하여, 다수의 현물 부동산 NFT에 대한 투자 비율을 최적화할 수 있는 목적을 가진다. 전체 시스템은 Solidity 언어로 작성한 smart contract, Flask 웹 프레임워크, 공공데이터포털의 "국토교통부_아파트매매 실거래자료 Open API"를 활용하였다.

애널리스트의 주가 예측이 결합된 로보어드바이저의 수익성 분석 (Robo-Advisor Profitability combined with the Stock Price Forecast of Analyst)

  • 김선웅
    • 한국융합학회논문지
    • /
    • 제10권9호
    • /
    • pp.199-207
    • /
    • 2019
  • 우리나라 주식시장에서 애널리스트들이 발표하는 주가 전망 자료를 입력변수로 활용한 로보어드바이저 포트폴리오의 수익성이 있는지를 분석하고자 하였다. 포트폴리오 구성을 위한 표본 주식은 업종을 대표하는 8개의 우량주이며, 분석 기간은 2003년부터 2019년까지의 17년 자료이다. 표본 주식에 대한 주가와 애널리스트 주가 전망 자료를 결합하는 블랙리터만모형을 통해 로보어드바이저 포트폴리오를 추천하고 벤치마크 대비 수익성을 비교하였다. 실증 분석 결과, 애널리스트들의 주가 전망 자료를 결합한 로보어드바이저 알고리즘의 수익성은 벤치마크 포트폴리오보다 연평균 1% 이상의 초과 수익을 시현하였다. 투자자들의 비판적 시각에도 불구하고 개별 종목에 대한 투자가 아닌 상대적 투자 비중을 구하는 로보어드바이저 관점에서는 애널리스트들의 주가 전망 자료가 경제적 가치를 보유하고 있음을 밝혔다. 향후 연구에서는 애널리스트들의 주가 전망 영향력이 대형주보다 더 클 것으로 예측되는 중 소형주를 포함한 로보어드바이저 포트폴리오의 수익성을 분석할 필요가 있다.

XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구 (A Study on Risk Parity Asset Allocation Model with XGBoos)

  • 김영훈;최흥식;김선웅
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.135-149
    • /
    • 2020
  • 인공지능을 기반으로 한 다양한 연구들이 현대사회에 많은 변화를 불러일으키고 있다. 금융시장 역시 예외는 아니다. 로보어드바이저 개발이 활발하게 진행되고 있으며 전통적 방식의 단점을 보완하고 사람이 분석하기 어려운 부분을 대체하고 있다. 로보어드바이저는 인공지능 알고리즘으로 자동화된 투자 결정을 내려 다양한 자산배분 모형과 함께 활용되고 있다. 자산배분 모형 중 리스크패리티는 대표적인 위험 기반 자산배분 모형의 하나로 큰 자산을 운용하는 데 있어 안정성을 나타내고 현업에서 역시 널리 쓰이고 있다. 그리고 XGBoost 모형은 병렬화된 트리 부스팅 기법으로 제한된 메모리 환경에서도 수십억 가지의 예제로 확장이 가능할 뿐만 아니라 기존의 부스팅에 비해 학습속도가 매우 빨라 많은 분야에서 널리 활용되고 있다. 이에 본 연구에서 리스크패리티와 XGBoost를 장점을 결합한 모형을 제안하고자 한다. 기존에 널리 사용되는 최적화 자산배분 모형은 과거 데이터를 기반으로 투자 비중을 추정하기 때문에 과거와 실투자 기간 사이의 추정 오차가 발생하게 된다. 최적화 자산배분 모형은 추정 오차로 인해 포트폴리오 성과에서 악영향을 받게 된다. 본 연구는 XGBoost를 통해 실투자 기간의 변동성을 예측하여 최적화 자산배분 모형의 추정 오차를 줄여 모형의 안정성과 포트폴리오 성과를 개선하고자 한다. 본 연구에서 제시한 모형의 실증 검증을 위해 한국 주식시장의 10개 업종 지수 데이터를 활용하여 2003년부터 2019년까지 총 17년간 주가 자료를 활용하였으며 in-sample 1,000개, out-of-sample 20개씩 Moving-window 방식으로 예측 결과값을 누적하여 총 154회의 리밸런싱이 이루어진 백테스팅 결과를 도출하였다. 본 연구에서 제안한 자산배분 모형은 기계학습을 사용하지 않은 기존의 리스크패리티와 비교하였을 때 누적수익률 및 추정 오차에서 모두 개선된 성과를 보여주었다. 총 누적수익률은 45.748%로 리스크패리티 대비 약 5% 높은 결과를 보였고 추정오차 역시 10개 업종 중 9개에서 감소한 결과를 보였다. 실험 결과를 통해 최적화 자산배분 모형의 추정 오차를 감소시킴으로써 포트폴리오 성과를 개선하였다. 포트폴리오의 추정 오차를 줄이기 위해 모수 추정 방법에 관한 다양한 연구 사례들이 존재한다. 본 연구는 추정 오차를 줄이기 위한 새로운 추정방법으로 기계학습을 제시하여 최근 빠른 속도로 발전하는 금융시장에 맞는 진보된 인공지능형 자산배분 모형을 제시한 점에서 의의가 있다.