• Title/Summary/Keyword: Black Shale

Search Result 57, Processing Time 0.021 seconds

Black shale as an effective sorbent of Trichloroethylene (Black shale을 이용한 유기 오염물질인 TCE의 흡착 제거에 관한 연구)

  • 민지은;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.246-249
    • /
    • 2002
  • Black shale that has relatively high organic carbon content was tested to determine its sorption phenomena and capacity for TCE. Conventional batch sorption tests were peformed at room temperature. The parameters that were thought to affect the TCE sorption were solution pH and dissolved organic matter. The effect of solution pH on TCE sorption was minimal, but the dissolved organic matter increased the amount of TCE sorbed on black shale. Thus, using black shale as sorbent for TCE in groundwater could save material costs by replacing high cost conventional activated organic carbon.

  • PDF

Effect of Humic acid on the Distribution of the Contaminants with Black Shale (휴믹산이 black shale과 오염물질의 분포에 미치는 영향에 대한 연구)

  • Min, Jee-Eun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.670-675
    • /
    • 2004
  • Humic acids are macromolecules originated from natural water, soil, and sediment. The characteristics of humic acid enable it to change the distribution of metals as well as many kinds of organic contaminants and to determine the sorption of them from soil solution. To see the effect of humic acid on the removal rate of organic contaminants and heavy metals, batch-scale experiments were performed. As a natural geosorbent, black shale was used as a sorbent media, which showed hight sorption capacity of trichloroethylene (TCE), lead, cadmium and chromium. The effect of sorption-desorption, pH, ionic strength and the concentration of humic acid was taken into consideration. TCE sorption capacity by black shale was compared to natural bentonite and hexadecyltrimethylammonium (HDTMA) modified bentonite. The removal rate was good and humic acid also sorbed onto black shale very well. The organic part of humic acid could effectively enhance the partition of TCE and it act as an electron donor to reduce Cr(VI) to Cr(III). Cationic metal of Pb(II) and Cd(II) also removed from the water by black shale. With 3 mg/L of humic acid, both Pb(II) and Cd(II) were removed more than without humic acid. That could be explained by sorption and complexation with humic acid and that was possible when humic acid could change the hydrophobicity and solubility of heavy metals. Humic acid exhibited desorption-resistivity with black shale, which implied that black shale could be an alternative sorbent or material for remediation of organic contaminants and heavy metals.

Engineering Properties of Red Shale and Black Shale of the Daegu Area, Korea (대구지역 적색 셰일과 흑색 셰일의 공학적 특성)

  • Kwag, Seong-Min;Jung, Yong-Wook;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.341-352
    • /
    • 2013
  • The physical and mechanical properties of red shale and black shale exposed in the Daegu area were investigated in tests conducted to determine unit weight, absorption ratio, porosity, ultrasonic velocity, unconfined compressive strength, point load strength, slake durability index, and deterioration characteristics. XRD, XRF, and SEM analyses were also performed on the shale specimens. While the unit weights of the two shales were similar, the absorption ratio and porosity were higher in the red shale than in the black shale. Despite the higher porosity of the red shale, the ultrasonic velocity, compressive strength, and point load strength were higher in the red shale, which is an unexpected result that may be due to the presence of fine laminations in the black shale. The deterioration rate, as determined from the point load strength and the slake durability index, increased with increasing immersion time and with the acidity of the immersion liquid. The deterioration rate was higher for the red shale than for the black shale because of the higher porosity of the former.

Seismic Traveltime Tomography in Anisotropic Black Shale (이방성 특성이 강한 흑색 셰일에서 탄성파 주시 토모그래피)

  • Kang, Jong-Seok;Cha, Young-Ho;Lee, Kwang-Bae;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.393-398
    • /
    • 2007
  • Seismic traveltime tomography technique was conducted at a site composed of black shale. It is well known that black shale has strong anisotropic property. Therefore, the anisotropic property of black shale has to be considered to obtain the appropriate subsurface velocity model by an inversion process. To estimate the anisotropic constant of the velocity of the black shale in the survey area, the relation between the velocity, which is calculated by the straight ray path and the first arrival time, and the angle of the ray propagation was examined. The elliptically shaped relation was found and it reveals that the black shale contains the anisotropic property of velocity. It was also noticed that the horizontal velocity is faster than the vertical velocity. When the estimated anisotropic constant was applied in the process of the velocity inversion for three sets of field data, we could obtain the appropriate velocity structures of the site that is consistent with the result of the geological survey.

Geology and Occurrence of Black Sandstone and Black Shale Dimension Stones, Korea (흑색사암(오석)과 흑색셰일(청석) 석재자원의 지질과 산출유형)

  • Park Deok Won;Hong Sei Sun;Kim Chul Joo;Lee Choon Oh;Lee Byeong Tae;Yun Hyun Soo
    • Economic and Environmental Geology
    • /
    • v.37 no.6 s.169
    • /
    • pp.585-601
    • /
    • 2004
  • A general study of domestic black sandstone and black shale quarries has not been made. For this reason it is difficult to know how the matter really stands. The objectives of this study are to achieve systematical and scientific study of the distribution, occurrences and rock quality of black sandstone and black shale resources exploited in existing quarries in the Boryeong area. The black sandstone bed survey was made from 54 mine claims on 4 sheets. In the area, 140 black sandstone and 22 black shale quarries were ascertained in 37 mine claims. The general development information data from that existing quarries were collected and synthesized. Among these black sandstone quarries for gravestones, monuments and black shale quarries for inkstone are in operation. Most of the black sandstone quarries were closed throughout the Gaewhari, Suburi, Seongjuri district in the investigated area even though these quarries had played a prominent part in the production of black sandstone. In view of commercial dimension stones, raw materials from black sandstone are classified as corestone and fresh rock body according to the characteristics of their occurrences and shape. Black sandstone beds are characteristically well-jointed and are particularly subdivided into cubic or quadrangular blocks in 3 joint sets. The colors of these black sandstones show medium dark $gray\~grayish$ black judging from the Rock Color Chart. The black sandstone beds which are intercalated in the Amisan, Jogeri, Baegunsa, Seongjuri Formations of the Daedong Supergroup are about $1\~10\;m$ in thickness.

Sorption of Dissolved Inorganic Phosphorus to Zero Valent Iron and Black Shale as Reactive Materials (반응매질로서의 영가철 및 블랙셰일에 용존무기 인산염 흡착)

  • Min, Jee-Eun;Park, In-Sun;Ko, Seok-Oh;Shin, Won-Sik;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.907-912
    • /
    • 2008
  • In order to reduce the availability of dissolved inorganic phosphorus in surface water, lakes, and estuaries, black shale and zero valent iron can be used as reacitve materials. Sorption of phosphate to sampled sediment, black shale, and zero valent iron was quantitatively evaluated in this research. Effect of coexistence of calcium was also tested, since coexisting ions can enhance the precipitation of phosphate. An empirical kinetic model with fast sorption(k$_t$), slow sorption(k$_s$), and precipitation(k$_p$) was well fitted to experiment data from this research. Langmuir and Freundlich sorption isotherms were also used to evaluated phosphate maximum sorption capacity. Calcium ions at 0, 1 and 5 mM affected the precipitation kinetic coefficient in empirical kinetic model but did not have impact on the maximum sorbed concentration.

Migration and Enrichment of Arsenic in Rock-Soil-Crop Plant System in Areas Covered with Black Shale and Slates of Okchon Zone (옥천대 흑색셰일 및 점판암 분포지역 암석-토양-농작물 시스템에서의 As및 관련 원소들의 분산과 이동)

  • 이지민;전효택
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.295-304
    • /
    • 2003
  • The Dukpyung and the Chubu areas were selected to investigate the migration and enrichment of arsenic and other toxic elements in soils and crop plants in areas covered with black shales. Rock and soil samples digested in 4-acid solution (HCI+HNO$_3$+HF+HC1O$_4$) were analyzed fer arsenic and other heavy metals by ICP-AES and ICP-MS, and plant samples by INAA. Mean concentration of As in Okchon black shale is higher than those of both world average values of shale and black shale. Especially high concentration of 23.2 mg/kg As is found in black shale from the Dukpyung area. Mean concentration of As is highly elevated in agricultural soils from the Duk-pyung (28.2 mg/kg) and the Chubu areas (32.6 mg/kg). Arsenic is highly elevated in rice stalks and leaves from the Dukpyung (1.14 mg/kg) and the Chubu areas (1.35 mg/kg). The biological absorption coefficient (BAC) of As in plant species decreases in the order of rice leaves>com leaves>red pepper>soybean leaves=sesame leaves>corn stalks>corn grains.

Dispersion and Enrichment of Potentially Toxic Elements in the Chungjoo Area Covered with Black Shales in Korea (충주지역 흑색셰일 분포지역에서의 잠재적 독성원소들의 분산과 부화)

  • Lee, Jin-Soo;Chon, Hyo-Taek;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.495-508
    • /
    • 1996
  • This study had three purposes: (1) to investigate dispersion and enrichment level of potentially toxic elements; (2) to identify uranium-bearing minerals in black shales; and (3) to assess the chemical speciation of heavy metals in soils and sediments. Rock, surface soil and stream sediment samples were collected in the Chungjoo area covered with black shales in Korea. These samples were analyzed for multi-elements using INAA and ICP-AES. The maximum abundance of U in black shales is 56 ppm and radioactivity counts up to 240CPM. Molybdenum, V, Ba, Cu, and Pb are enriched in black shales and most of soils show high concentrations of U, Mo, Ba, Cu, Pb and Zn. Concentrations of potentially toxic elements decrease in the order of mountain soil > farmland soil > paddy soil. Enrichment index of soils and sediments are calculated and higher than 1.0 in the black shale area with the highest value of 6.1. In order to identify U-bearing minerals, electron probe micro analysis was applied, and uraninite and brannerite in black shale were found. Uraninite grains are closely associated with monazite or pyrite with the size of $2{\mu}m$ to $10{\mu}m$ in diameter whereas brannerite occurs as $50{\mu}m$ euhedral grains. With the results of sequential extraction scheme, residual fractions of Cu, Pb and Zn in soils are mainly derived from weathering of black shale but Cu, Pb and Zn in sediments are present as non-residual fractions. Lead is predominantly present as oxidizable phase in soils whereas Zn is in exchageable/water-acid soluble phase in sediments.

  • PDF

Kerogen Facies of the Cretaceous Black Shales from the Angola Basin (DSDP Site 530), South Atlantic (앙골라분지 백악기 흑색셰일의 유기물상)

  • 박영수
    • 한국해양학회지
    • /
    • v.22 no.2
    • /
    • pp.87-104
    • /
    • 1987
  • The middle Cretaceous stratigraphec section of Deep Sea Drilling Project (DSDP) Site 530 in the Angola Basin is characterized by cyclic interbeds of organic-carbon-rich black shales and organic-carbon-poor red and green claystones, namely the black shale sequence. A number of samples from the black shale sequence were analyzed for the typesand distribution of insoluble sedimentary organic matter(kerogen) in order to give more information on the depositional conditions of the black shales in the Angola Basin. The dominant type of kerogen in the black shale sequence at Site 530 is amorphous organic matter mainly of marine planktonic algal origin. It probably consists of remains of some unfossiliqed dinoflagellates. The cyclic preservation of organic-carbon-rich black shales in the Angola Basin during the mid-Cretaceous could be explained by the low dissolved-oxygen concentration in the warm, saline deep and bottom waters combined with the sluggish circulation within the highly restricted basin, and the periodic high productivity in the surface waters.

  • PDF