• Title/Summary/Keyword: Black Hole

Search Result 281, Processing Time 0.026 seconds

The fate of an infalling circumgalactic gas clump and the growth of the central massive black hole in a high-redshift quasar

  • Jo, Yongseok;Kim, Ji-hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.35.1-35.1
    • /
    • 2020
  • Since the discovery of SMBHs at z > 6, the growth spurt of a BH in a relatively short time—a few hundred Myr—has been a challenging topic for many observers and theorists. Super-Eddington accretion, major and minor merger have been compelling candidate machanisms to account for such growth. We introduce a passive scalar field to trace the infalling of circumgalactic gas clump onto high-z quasar. With the scalar field, we investigate e.g. where the most of the gas clump eventually reside in the host galaxy and how much gas is accreted onto the central massive black hole. In addition, we have studied the impact of thermal feedback of stars on the growth of black hole and the infalling gas. We will also discuss the future application of passive scalar field in e.g. minor and major mergers of high-z quasar.

  • PDF

Effect of the Black-Hole Attack in Vehicular Ad-Hoc Networks

  • Mohamed Anis Mastouri;Salem Hasnaoui
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.139-144
    • /
    • 2024
  • VANETs have become one of the most attractive research areas in the world of wireless networks in recent years. Indeed, vehicular networks have become capable of optimizing road traffic, which significantly reduces the number of accidents through notifications exchanged between nearby vehicles. The routing function based on the opportunistic algorithm is a critical part of the vehicle's communication system and will therefore be an ideal target for attacks that could aim to prevent alert messages from reaching their destination, and thus endanger human lives. The black hole attack is a major threat to the security of VANETs. The main idea of this paper focuses on the analysis of this type of attack in VANETs using Discrete-Time Markov Chains (DTMC). and deduce at the end the effect of the number of malicious nodes on the delivery rate in the network.

Observational Evidence for the Coevolution between Supermassive Black Holes and Host Galaxies

  • Kim, Minjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.29.5-30
    • /
    • 2016
  • (1) The correlation between the mass of supermassive black holes (SMBHs) and the properties of their host galaxies suggests that SMBHs and host galaxies are closely linked in their formation and evolution. While the exact origin of their relationship is still under debate, theoretical models often invoke feedback from active galactic nuclei as a crucial mechanism for establishing the BH-host correlation. In the first part of my talk, I will present our efforts to find observational sign of the AGN feedback in young luminous AGNs. (2) While intermediate-mass black hole (IMBH) is thought be cosmologically important class to understand the link between stellar mass black holes and SMBHs, it is extremely rare in the present-day Universe. In the second part of this talk, I will report a Gemini/GMOS-N IFU study of an ultraluminous X-ray source in NGC 5252, which is a possible candidate of an off-nuclear non-stellar black hole.

  • PDF

bservational Evidence for the Coevolution between Supermassive Black Holes and Host Galaxies

  • Kim, Minjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.27.4-27.4
    • /
    • 2017
  • (1) The correlation between the mass of supermassive black holes (SMBHs) and the properties of their host galaxies suggests that SMBHs and host galaxies are closely linked in their formation and evolution. While the exact origin of their relationship is still under debate, theoretical models often invoke feedback from active galactic nuclei as a crucial mechanism for establishing the BH-host correlation. In the first part of my talk, I will present possible observational biases in the BH-host relation, and methods to overcome these biases. I will also report our efforts to find observational sign of the AGN feedback in high-z young luminous AGNs. (2) While intermediate-mass black hole (IMBH) is thought be cosmologically important class to understand the link between stellar mass black holes and SMBHs, it is extremely rare in the present-day Universe. In the second part of this talk, I will report a Gemini/GMOS-N IFU study of an ultraluminous X-ray source in NGC 5252, which is a possible candidate of an off-nuclear non-stellar black hole.

  • PDF

LOW FREQUENCY OBSERVATIONS OF A RADIO LOUD DWARF GALAXY

  • Park, Songyoun;Sengupta, Chandreyee;Sohn, Bong Won;Paudel, Sanjaya
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.5
    • /
    • pp.151-155
    • /
    • 2017
  • We investigate the radio properties of the dwarf galaxy SDSS J133245.62+263449.3 which shows optical signatures of black hole activity. Dwarf galaxies are known to host intermediate mass black holes (IMBHs) with masses $M_{BH}{\sim}10^{4-6}M_{\odot}$, some of them being radio loud. Recently, Reines et al. (2013) found dwarf galaxy candidates which show signatures of being black hole hosts based on optical spectral lines. SDSS J133245.62+263449.3 is one of them; it shows a flux density of ~ 20 mJy at 1.4 GHz, which corresponds to $L_{1.4GHz}{\sim}10^{23}W\;Hz^{-1}$. This is much brighter than other black hole host dwarf galaxies. However, star formation activity can contribute to radio continuum emission as well. To understand the nature of the radio emission from SDSS J133245.62+263449.3, we imaged this radio loud dwarf galaxy at low frequencies (325 MHz and 610 MHz) using the Giant Metrewave Radio Telescope (GMRT). We present here the high resolution images from our GMRT observations. While we detect no obvious extended emission from radio jets from the central AGN, we do find the emission to be moderately extended and unlikely to be dominated by disk star formation. VLBI observations using the Korean VLBI Network (KVN) are now being planned to understand the emission morphology and radiation mechanism.

THE MASS DISTRIBUTION IN THE VICINITY OF THE GALACTIC CENTER

  • MCGREGOR PETER J.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.119-122
    • /
    • 1996
  • The case for a massive black hole in the center of the Galaxy is reassessed using improved modeling techniques and observational data. A dark mass of ${\~}{\times} 10^6$ Mo is present within 0.2 pc of the Galactic center. However, the available data can be modeled, without appealing to a massive black hole, using an extended distribution of dark stellar remnants (neutron stars and stellar mass black holes) provided that the stellar initial mass function in the central parsec is deficient in stars less massive than $\~$1 Mo. Such a situation may be a natural consequence of repeated gas build-up followed by starbursts in the central region. A clear distinction between this and the massive central black hole model cannot be made using red giant tracers outside 0.2 pc due to uncertainties in the radial velocity dispersion distribution. The cluster of massive early-type emission-line stars in the central parcsec more effectively probe the mass distribution close to Sgr A $\ast$, but their small number and partial rotational support complicate mass determinations. Proper motion determinations for stars within 0.5' of Sgr A$\ast$ may be the most effective means of unambiguously determining the mass distribution in the immediate vicinity of the Galactic center.

  • PDF

Hearts of Darkness: Rethinking the Role of Supermassive Black Holes in Galaxy Evolution

  • Zabludoff, Ann
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.31.1-31.1
    • /
    • 2018
  • While astronomers are working hard to detect the earliest galaxies and to follow their evolution to redshift z~0, they remain baffled by the present-day dichotomy between disky, star forming (aka late-type) galaxies and quiescent, spheroidal (aka early-type) galaxies. The key is to find galaxies in transition from one class to the other, whose spectra indicate intense recent star formation that has now ended. We have identified thousands of such "post-starburst galaxies" and discovered that they are often the products of late-type galaxy-galaxy mergers. Their current kinematics, stellar populations, and morphologies are consistent with late- to early-type galaxy evolution. I will discuss recent work that suggests new connections between this violent history and the central supermassive black hole. In particular, the molecular gas reservoir of a post-starburst galaxy declines rapidly after the starburst ends and in a manner consistent with feedback from an active nucleus. Furthermore, a star is ~300x more likely to be tidally disrupted by the nucleus of a post-starburst galaxy than in other galaxies. Like the well-known black hole-bulge mass correlation, these surprising links between the properties of a galaxy on kpc scales and its supermassive black hole on pc scales require explanation.

  • PDF

MASSIVE BLACK HOLE EVOLUTION IN RADIO-LOUD ACTIVE GALACTIC NUCLEI

  • FLETCHER ANDRE B.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.177-187
    • /
    • 2003
  • Active galactic nuclei (AGNs) are distant, powerful sources of radiation over the entire electromagnetic spectrum, from radio waves to gamma-rays. There is much evidence that they are driven by gravitational accretion of stars, dust, and gas, onto central massive black holes (MBHs) imprisoning anywhere from $\~$1 to $\~$10,000 million solar masses; such objects may naturally form in the centers of galaxies during their normal dynamical evolution. A small fraction of AGNs, of the radio-loud type (RLAGNs), are somehow able to generate powerful synchrotron-emitting structures (cores, jets, lobes) with sizes ranging from pc to Mpc. A brief summary of AGN observations and theories is given, with an emphasis on RLAGNs. Preliminary results from the imaging of 10000 extragalactic radio sources observed in the MITVLA snapshot survey, and from a new analytic theory of the time-variable power output from Kerr black hole magnetospheres, are presented. To better understand the complex physical processes within the central engines of AGNs, it is important to confront the observations with theories, from the viewpoint of analyzing the time-variable behaviours of AGNs - which have been recorded over both 'short' human ($10^0-10^9\;s$) and 'long' cosmic ($10^{13} - 10^{17}\;s$) timescales. Some key ingredients of a basic mathematical formalism are outlined, which may help in building detailed Monte-Carlo models of evolving AGN populations; such numerical calculations should be potentially important tools for useful interpretation of the large amounts of statistical data now publicly available for both AGNs and RLAGNs.

INVESTIGATION OF WAVES PROPAGATING IN ISOTHERMAL PLASMA AROUND DE SITTER BLACK HOLE

  • Hasan, M. Khayrul;Ali, M. Hossain
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.5
    • /
    • pp.107-123
    • /
    • 2009
  • We investigate the wave properties for isothermal plasma state around to the de Sitter black hole's horizon using 3+1 split of spacetime. The corresponding Fourier analyzed perturbed perfect GRMHD equations are used to obtain the complex dispersion relations. We obtain the real values of the wave number k, from these relations, which are used to evaluate the quantities like phase and group velocities etc. These have been analyzed graphically in the neighborhood of the horizon.

[발표취소] Gravitational Lensing by an Isothermal Sphere with a Supermassive Black Hole

  • Kim, Donghyeon;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.51.2-51.2
    • /
    • 2015
  • Gravitational lensed quasar systems are usually explained by a source quasar lensed by a galaxy that can be approximated by an isothermal sphere. But most galaxies have a supermassive black hole (SMBH) at its center. We study the lensing by an isothermal sphere with a central SMBH. The additional lensing effects of a SMBH on the number, position, and magnification of lensed images are investigated. We apply the analysis to observed lens systems including Q0957+561. We also study the lensing by an elliptical mass distribution with a SMBH.

  • PDF