• Title/Summary/Keyword: Bivariate normal distribution

Search Result 57, Processing Time 0.03 seconds

Test for Independence in Bivariate Pareto Model with Bivariate Random Censored Data

  • Cho, Jang-Sik;Kwon, Yong-Man;Choi, Seung-Bae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2004
  • In this paper, we consider two components system which the lifetimes follow bivariate pareto model with bivariate random censored data. We assume that the censoring times are independent of the lifetimes of the two components. We develop large sample test for testing independence between two components. Also we present a simulation study which is the test based on asymptotic normal distribution in testing independence.

  • PDF

Multivariate confidence region using quantile vectors

  • Hong, Chong Sun;Kim, Hong Il
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.641-649
    • /
    • 2017
  • Multivariate confidence regions were defined using a chi-square distribution function under a normal assumption and were represented with ellipse and ellipsoid types of bivariate and trivariate normal distribution functions. In this work, an alternative confidence region using the multivariate quantile vectors is proposed to define the normal distribution as well as any other distributions. These lower and upper bounds could be obtained using quantile vectors, and then the appropriate region between two bounds is referred to as the quantile confidence region. It notes that the upper and lower bounds of the bivariate and trivariate quantile confidence regions are represented as a curve and surface shapes, respectively. The quantile confidence region is obtained for various types of distribution functions that are both symmetric and asymmetric distribution functions. Then, its coverage rate is also calculated and compared. Therefore, we conclude that the quantile confidence region will be useful for the analysis of multivariate data, since it is found to have better coverage rates, even for asymmetric distributions.

Bivariate ROC Curve (이변량 ROC곡선)

  • Hong, C.S.;Kim, G.C.;Jeong, J.A.
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.277-286
    • /
    • 2012
  • For credit assessment models, the ROC curves evaluate the classification performance using two univariate cumulative distribution functions of the false positive rate and true positive rate. In this paper, it is extended to two bivariate normal distribution functions of default and non-default borrowers; in addition, the bivariate ROC curves are proposed to represent the joint cumulative distribution functions by making use of the linear function that passes though the mean vectors of two score random variables. We explore the classification performance based on these ROC curves obtained from various bivariate normal distributions, and analyze with the corresponding AUROC. The optimal threshold could be derived from the bivariate ROC curve using many well known classification criteria and it is possible to establish an optimal cut-off criteria of bivariate mixture distribution functions.

Large Sample Test for Independence in the Bivariate Pareto Model with Censored Data

  • Cho, Jang-Sik;Lee, Jea-Man;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.377-383
    • /
    • 2003
  • In this paper, we consider two components system in which the lifetimes follow the bivariate Pareto model with random censored data. We assume that the censoring time is independent of the lifetimes of the two components. We develop large sample tests for testing independence between two components. Also we present simulated study which is the test based on asymptotic normal distribution in testing independence.

  • PDF

Large Sample Tests for Independence in Bivariate Pareto Model with Censored Data

  • Cho, Jang-Sik;Lee, Jea-Man;Lee, Woo-Dong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.121-126
    • /
    • 2003
  • In this paper, we consider two-components system which the lifetimes follow bivariate pareto model with censored data. We develop large sample tests for testing independence between two-components. Also we present simulated study which is the test based on asymptotic normal distribution in testing independence.

  • PDF

The Reliability Estimation of Parallel System in Bivariate Exponential Model : Using Bivariate Type 1 Censored Data (이변량 지수모형에서 병렬시스템의 신뢰도 추정 : 이변량 1종 중단 자료이용)

  • 조장식;김희재
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.4
    • /
    • pp.79-87
    • /
    • 1997
  • In this paper, we obtain maximum likelihood estimator(MLE) of a parallel system reliability for the Marshall and Olkin's bivariate exponential model with birariate type 1 consored data. The asymptotic normal distribution of the estimator is obtained. Also we construct an a, pp.oximate confidence interval for the reliability based on MLE. We present a numerical study for obtaining MLE and a, pp.oximate confidence interval of the reliability.

  • PDF

Other approaches to bivariate ranked set sampling

  • Al-Saleh, Mohammad Fraiwan;Alshboul, Hadeel Mohammad
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.3
    • /
    • pp.283-296
    • /
    • 2018
  • Ranked set sampling, as introduced by McIntyre (Australian Journal of Agriculture Research, 3, 385-390, 1952), dealt with the estimation of the mean of one population. To deal with two or more variables, different forms of bivariate and multivariate ranked set sampling were suggested. For a technique to be useful, it should be easy to implement in practice. Bivariate ranked set sampling, as introduced by Al-Saleh and Zheng (Australian & New Zealand Journal of Statistics, 44, 221-232, 2002), is not easy to implement in practice, because it requires the judgment ranking of each of the combination of the order statistics of the two characteristics. This paper investigates two modifications that make the method easier to use. The first modification is based on ranking one variable and noting the rank of the other variable for one cycle, and do the reverse for another cycle. The second approach is based on ranking of one variable and giving the second variable the same rank (Concomitant Order Statistic) for one cycle and do the reverse for the other cycle. The two procedures are investigated for an estimation of the means of some well-known distributions. It is show that the suggested approaches can be used in practice and can be more efficient than using SRS. A real data set is used to illustrate the procedure.

A bivariate extension of the Hosking and Wallis goodness-of-fit measure for regional distributions

  • Kjeldsen, Thomas Rodding;Prosdocimi, Ilaria
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.239-239
    • /
    • 2015
  • This study presents a bivariate extension of the goodness-of-fit measure for regional frequency distributions developed by Hosking and Wallis [1993] for use with the method of L-moments. Utilising the approximate joint normal distribution of the regional L-skewness and L-kurtosis, a graphical representation of the confidence region on the L-moment diagram can be constructed as an ellipsoid. Candidate distributions can then be accepted where the corresponding the oretical relationship between the L-skewness and L-kurtosis intersects the confidence region, and the chosen distribution would be the one that minimises the Mahalanobis distance measure. Based on a set of Monte Carlo simulations it is demonstrated that the new bivariate measure generally selects the true population distribution more frequently than the original method. An R-code implementation of the method is available for download free-of-charge from the GitHub code depository and will be demonstrated on a case study of annual maximum series of peak flow data from a homogeneous region in Italy.

  • PDF

Fuzzy Testing of Independence in Bivariate Normal Distribution (2변량 정규분포의 독립성에 관한 퍼지 검정)

  • Kang, Man-Ki;Seo, Hyun-A
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • We furnished some properties of fuzzy testing of independence for correlation in a bivariate normal distribution by agreement index. First we present some restriction of the fuzzy data, define fuzzy sample correlation coefficient and agreement index for testing hypothesis with acceptance or rejection degree. Also, we show that UMP unbiased fuzzy test and drawing conclusions the fuzzy test.

Probabilistic Analyrgis of Slope Stactility for Progressive Failure (진행성 파괴에 대한 사면안정의 확률론적 해석)

  • 김영수
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.5-14
    • /
    • 1988
  • A probabilistic model for the progressive failure in a homogeneous soil slope consisting of strain-softening material is presented. The local safety margin of any slice above failure surface is assumed to follow a normal distribution. Uncertainties of the shear strength along potential failure surface are expressed by one-dimensional random field models. In this paper, only the case where failure initiates at toe and propagates up to the crest is considerd. The joint distribution of the safety margin of any two adjacent slices above the failure surface is assumed to be bivariate normal. The overall probability of the sliding failure is expressed as a product of probabilities of a series of conditional el.eats. Finally, the developed procedure has been applied in a case study to yield the reliability of a cut slope.

  • PDF