• Title/Summary/Keyword: Bituminous

Search Result 253, Processing Time 0.028 seconds

Combustion characteristics of two imported Indonesia coals as a pulverized fuel of thermal power plants (인도네시아산 발전용 수입 석탄 2종의 연소특성 비교 평가)

  • Lee, Hyun-Dong;Kim, Jae-Kwan
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.136-142
    • /
    • 2010
  • Combustion reactivity and thermal behavior of two imported coals used as a pulverized fuel of commercially thermal power plant were investigated by thermogravimetric analysis (TGA) and large scale test furnace of 200 kg/hr. TGA results showed that combustion efficiency of high moisture coal has lower than reference coal due to the slow combustion completion rate although it has the low ignition temperature, and activation energies of high moisture coal with 79 kJ/mol for overall combustion was higher than reference coal of 53 kJ/mol. Test furnace results ascertained that flame of black band of high moisture coal during the combustion in boiler broke out compared to reference coal and then it becomes to unburned carbon due to the less reactivity and combustion rate. But, Blending combustion of high moisture coal with design coal of high sulfur are available because sulfur content of high moisture coal was too low to generate the low SOx content in flue gas from boiler during the combustion. The ash analysis results show that it was not expected to be associated with slagging and fouling in pulverized coal fired systems due to the low alkali metal content of $Na_2O$ and $K_2O$ compared to bituminous coal.

Economic Evaluations of DCL/ICL Processes (직·간접석탄액화공정의 경제성 평가)

  • Park, Joo-Won;Bae, Jong-Soo;Kweon, Yeong-jin;Kim, Hak-Joo;Jung, Heon;Han, Choon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.781-787
    • /
    • 2009
  • This report investigates the economic proprieties of commercial 50,000 barrel per day direct/indirect coal liquefaction(DCL/ICL) plants to produce commercial-grade diesel and naphtha liquids. The scope of the study includes capital and operating cost estimates, sensitivity analyses and a comparative financial analyses. Based on plant capacity of 50,000BPD, employing Illinois #6 bituminous coal as feed coal, the total capital cost appeared $3,994,858,000(DCL) and $4,962,263,000(ICL). Also, the internal rate of return of DCL/ICL appeared 13.27% and 12.68% on the base condition respectively. In this case, coal price and sale price of products were the most influence factors. And ICL's payback period(6.8 years) was longer than DCL's(6.6 years). According to sensitivity analyses, the important factors on both DCL/ICL processes were product sale price, feed coal price and the capital cost in order.

Effects of Fly Ash on Heavy Metal Contents in Percolated Water of Paddy Soil (석탄회 시용이 논 토양수중의 중금속성분 용출에 미치는 영향)

  • Kim, Yong Woong;Yoon, Chung Han;Shin, Bang Sup;Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.236-242
    • /
    • 1996
  • This study was conducted to investigate the changes of heavy metals in percolated water of paddy soil in which rice was cultivated in conditions of 0%, 5%. 30% addition of bituminous and anthracite fly ash respectively. In cultivated plot, the contents of Fe in percolated water increased gradually during the cultivation. But there was no sharp difference of Fe contents in fly ash treated plots. The contents of Mn in percolated water increased gradually during the cultivation and was high in the cultivated plot. But difference in the contents of Mn among plots not clear. The contents of Zn in percolated water was highest during 20-25 days in the cultivation, thereafter decreased gradually. The fly ash did not cause to increase the contents of Zn in percolated water. The contents of Cu in percolated water decreased through the cultivation. Fly ash treatment did not cause to increase the contents of Cu in percolated water. The contents of Pb in percolated water decreased gradually over the cultivation. Fly ash treatment did not largely influence to Pb percolation. In mid-July. Pb did not almost appeared in percolated water. The contents of Cd was highest about 15 days of the transplant, thereafter decreased gradually. After 40 day of the cultivation, leach of Cd stopped. When fly ashes were applied in paddy soil, the contents of heavy metals in percolated water was not so much compared with control plot. It seems that originally low contents of heavy metals in fly ash and decrease in solubility of heavy metals in a relatively high soil pH make it possible to use fly ash as a soil conditioner.

  • PDF

Kinetic Analysis of Isothermal Pyrolysis of Korean Refuse Plastic Fuel for Application to Circulating Fluidized Bed Boiler (순환유동층 적용을 위한 국내 폐플라스틱 고형연료의 등온 열분해 분석)

  • Park, Kyoung-Il;Kim, Dong-Won;Lee, Tae-Hee;Lee, Jong-Min
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.692-699
    • /
    • 2013
  • In this study, isothermal (350, 375, 400, 425, 450, 500, $850^{\circ}C$) experiments were carried out using a custom-made thermobalance to analyze the thermal decomposition properties of refuse plastic fuel (RPF), which is to be used as a cofiring fuel with a sub-bituminous coal at commercial circulating fluidized bed (CFB) boiler in Korea. In isothermal pyrolysis results, no change in the reaction model was observed in the temperature range of $375{\sim}450^{\circ}C$ and it was revealed that the first order chemical reaction (F1) is the most suitable among 12 reaction models. The activation energy shows similar results irrespective of application of reaction model in that the activation energy was 39.44 kcal/mol and 36.96 kcal/mol when using Arrhenius equation and iso-conversional method ($0.5{\leq}X{\leq}0.9$) respectively. Mean-while, the devolatilization time ($t_{dev}$) according to particle size (d) of RPF could be expressed as $t_{dev}=10.38d^{2.88}$ at $850^{\circ}C$, operation temperature of CFB and for even distribution and oxidation of RPF in CFB boiler, we found that the relationship of average dispersion distance (x) and particle size was $x{\leq}1.58d^{1.44}$.

Reaction Rate Analysis of CO2 Gasification for Indonesian Coal Char at High Temperature and Elevated Pressure (고온, 고압조건에서의 인도네시아 석탄촤의 CO2 가스화 반응)

  • Lisandy, Kevin Yohanes;Kim, Ryang-Gyoon;Hwang, Chan-Won;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.781-787
    • /
    • 2014
  • A pressurized wire mesh heating reactor (PWMR) can provide high pressure and temperature experimental conditions up to 50 atm and 1750 K, respectively. This equipment was developed to evaluate the intrinsic reaction kinetics of $CO_2$ gasification. A PWMR utilizes a platinum (Pt) wire mesh resistance to generate heat with a direct current (DC) electricity supply. This DC power supply can then be controlled by computer software to reach the exact expected terminal temperature and heating period. In this study, BERAU (sub-bituminous Indonesian coal) was pulverized then converted into char with a particle size of $90-150{\mu}m$. This was used in experiments with various pressures (1-40 atm) and temperatures (1373-1673 K) under atmospheric conditions. The internal and external effectiveness factor was analyzed to determine the effects of high pressure. The intrinsic reaction kinetics of BERAU char was obtained using $n^{th}$ order reaction rate equations. The value was determined to be 203.8kJ/mol.

Effects of Fly Ash, Gypsum, and Shell on the Chemical Properties of Soil and Growth of Chinese Cabbage in Acidic Soils (산성토양에서 석탄회,석고,패각시용이 토양화학성과 배추의 생육에 미치는 영향)

  • Ha, Ho-Sung;Kang, Ui-Gum;Lee, Hyub;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.164-169
    • /
    • 1998
  • In order to evaluate the utility of the bituminous coal fly ash, gypsum, oyster shell as soil amendments, acid sandy loam soil with low boron content were amended in the upper 15cm with amendments, and then chinese cabbage was cultivated in fall. Amendments treated were, in metric tons per hectare, i ) none(Check) ; ii) 80 fly ash(FA) ; iii) 4shell(SH) ; iv) 56 fly ash+24gypsum (FG) ; v) 40 fiy ash + 24 gypsum +0.8 shell(FGS). On the whole, amendments imoroved soil chemical properties and contents of N, P, K, Ca, and B in leaves. Among treatmens, FA prominently neutralized soil pH and increased available $P_2O_5$ ,B but decreased Fe contents in soils. FGS also affected the increment of exchangeable Ca, Mg, and available B. Yield response in fresh weight of chinese cabbage was in order of 85% for FGS>77% for FG>66% FA>5% for SH plants. Reducing sugar and vitamin-C contents of leaves depending on treatments showed the same tendencies as that in yields, whereas crude fiber opposite to theme. In particular, FA, FG, and FGS plants showed normal growth without boron deficiency symotoms which appeared in Check and SH plants.Taken together, FGS was an effective combination enable to maximize the utility of fly ash, gypsum, and shell as soil amemdments, especially in cabbage yield and quality.

  • PDF

Effects of Fly Ash,Gypsum,and Shell on the Chemical Properties of Soil and Growth of Chinese Cabbage in Plastic Film Housed Paddy (시설재배논에 석탄회,석고,패각시용이 토양화학성과 배추의 생육에 미치는 영향)

  • Ha, Ho-Sung;Kang, Ui-Gum;Lee, Hyub;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.65-69
    • /
    • 1998
  • In order to evaluate the utility of bituminous coal fly ash, gypsum, oyster shell as soil amendments, aadic clayloam paddy soils with low calaum content were amended in the upper 15㎝ with amendments, and then Chinese cabbage was cultivated under plastic film house. Amendments treated were, in metric tons per hectare, i) none(Check) ; ii) 80 fly ash(FA) ; iii) 4 shell(SH) ; iv) 56 fly ash+24 gypsum (FG) ; v) 40 fly ash+24 gypsum+0.8 shell(FGS). On the whole, soil chemical properties were improved by amendments treatments. Amongst treatments, FA prominently neutralized soil pH and increased contents of Av. $P_2O_5$, Ex. K, and Av. B in soils. Besides, it showed the highest ratio in bacteria/fungi and (bacteria+actinomycetes)/fungi. FGS also affected the neutralization of soil pH and the increment of Ex. Mg. Amendments plants appeared alkaline damages only at early growing stage, but showed positive responses in fresh weight yields : 23% for FGS : 21% for FG : 19 18% for SH. At harvesting, leaves both of FA and FGS plants had higher values in contents of N, P, K, Ca, Mg, Fe, Mn, Zn, B, reduang-sugar, and vitamin-C than of others. In especial, Check plants appeared the heart rot symptoms owing to calaum defiaency differently from amendments plants. Taken together, FGS was an effective combination enable to maximize the utility of fly ash, gypsum, shell as soil amendments, espeaally in cabbage yield and quality.

  • PDF

Gasification Kinetics of an Indonesian Subbituminous Coal Char Reactivity with $CO_2$at Elevated Pressure (가압하에서 인도네시아 아역청탄촤의 $CO_2$ 가스화 반응성에 관한 실헙적 연구)

  • 안달홍;고경호;이종민;주용진;김종진
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.206-213
    • /
    • 2001
  • Gasification kinetics of an Indonesian sub-bituminous coal-char with $CO_2$at elevated pressure was investigated with a pressurised drop tube furnace reactor. The effects of reaction temperature (900~140$0^{\circ}C$), partial pressure of carbon dioxide (0.1~0.5 MPa), and total system pressure (0.5, 0.7, 1.0, 1.5MPa) on gasification rate of the coal char with $CO_2$have been determined. It was found that the gasification rate was dependent on the total system pressure with the same partial pressure and temperature. The $n^{th}$ order rate equation (R=k $P^{g}$ $_{asn}$) was modified to be R=k $P^{g}$ $_{asn}$ $P^{m}$ $_{total}$ to describe the gasification rate where the total system pressure was changed. The gasification reaction rate of char-$CO_2$at high temperature and elevated pressure may be expressed as dX/dt=(174.1)exp(-71.5/RT)( $P_{CO2}$)0.40( $P_{total}$ )0.65(1-X)$^{2}$ 3/.X> 3/.

  • PDF

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Allura Red from Aqueous Solution by Granular Activated Carbon (입상활성탄에 의한 수용액으로부터 오로라 레드의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.430-436
    • /
    • 2014
  • Allura Red (AR) is a water-soluble harmful tar-based food colorant (FD & C Red 40). Batch adsorption studies were performed for the removal of AR using bituminous coal based granular activated carbon as adsorbent by varying the operation parameters such as adsorbent dosage, initial concentration, contact time and temperature. Experimental equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin isotherms. The equilibrium process was described well by Freundlich isotherm. From determined separation factor ($R_L$), adsorption of AR by granular activated carbon could be employed as effective treatment method. Temkin parameter, B was determined to 1.62~3.288 J/mol indicating a physical adsorption process. By estimation of adsorption rate experimental data, the value of intraparticle diffusion rate constant ($k_m$) increased with the increasing adsorption temperature. The adsorption process were found to confirm to the pseudo second order model with good correlation. Thermodynamic parameters like change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The negative Gibbs free energy change (${\Delta}G$ = -2.16~-6.55 kJ/mol) and the positive enthalpy change (${\Delta}H$ = + 23.29 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption process, respectively.

Reaction Rate Analysis of Combustion for Indonesian Coal Char Applied by External/Internal Diffusion (외부 및 내부 확산을 적용한 인도네시아 석탄촤의 연소 반응율 분석)

  • Hwang, Chan-Won;Kim, Ryang-Gyoon;Ryu, Kwang-Il;Wu, Ze-Lin;Jeon, Chung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.133-140
    • /
    • 2014
  • The experiment was designed to compare the char combustion kinetics of pulverized Indonesia coals commonly utilized in Korea power plants. The reaction rate of coal char has been formulated using the external and internal effectiveness factors to describe the diffusion effect quantitatively. The Random Pore Model (RPM) was used for applying internal specific surface area as a function of carbon conversion ratio. Reaction rate was obtained from reaction time using the Wire Heating Reactor (WHR) which can heat and measure the char particle temperature at the same time. BET and TGA were used to obtain physical properties such as internal specific surface area and structural parameter. Three kinds of Indonesia Sub-bituminous coals "BARAMULTI, ENERGYMAN, AGM" were used in order to derive the activation energy and pre-exponential factor. The results of this study showed that the effect of internal diffusion than that of external diffusion is the dominant as comparison of kinetics was reflected in external and internal effectiveness factors. For three kinds of coal char, finally, activation energy of intrinsic kinetics indicates 110~118 kJ/mol.