• Title/Summary/Keyword: Bit-Parallel

Search Result 406, Processing Time 0.026 seconds

A High Speed MUX/DEMUX Chip using ECL Macrocell Array (ECL 매크로 셀로 설계한 고속 MUX/DEMUX 소자)

  • Lee, Sang-Hun;Kim, Seong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.51-58
    • /
    • 2002
  • In this paper, a 155/311 Mb/s MUX/DEMUX chip using ECL macrocell away has been developed with a single device. This device for a 2.5 Gb/s SDH based transmission system is to interleave the parallel data of 51 Mb/s into 155 Mb/s(or 311 Mb/s) serial data output, and is to interleave a serial input bit stream of 155 Mb/s(or 311 Mb/s) into the parallel output of 51 Mb/s. The input and output of the device ate TTL compatible at the low-speed end, but 100k ECL compatible at the high-speed end. The device has been fabricated with Motorola ETL3200 macrocell away The fabricated chip shows the typical phase margin of 180 degrees and output data skew less than 220ps at the high-speed end.

Design and implementation of an interpolator for high speed UWB system (고속 UWB 시스템을 위한 인터폴레이터의 설계 및 구현)

  • Kim, Sang-Dong;Lee, Jong-Hun;Jung, Woo-Young;Chong, Jong-Wha
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.64-69
    • /
    • 2007
  • This paper designs an interpolator for a high speed ultra wide bandwidth (UWB). The UWB wireless technology will play a key role in short-range wireless connectivity supporting very high bit rates availability, low power consumption, and location capabilities. Because the UWB needs high operating speed, a cubic interpolator based on variable parameters for the UWB needs to be operated at a high speed. In order to improve an operating speed, the modified cubic interpolator is based on both a parallel processing and a pipelining in the existing interpolator simultaneously. Experimental results show that a maximum operating speed and period of the proposed interpolator using Stratix II EP2S60F1020C3 is 102.42MHz and 9.764ns, respectively. Compared to the conventional interpolator, the designed cubic parameter interpolator has been improved more than about 190%.

A study on the parallel processing of the avionic system computer using multi RISC processors (다중 RISC 프로세서를 이용한 항공전자시스템컴퓨터 병렬처리기법 연구)

  • Lee, Jae-Uk;Lee, Sung-Soo;Kim, Young-Taek;Yang, Seung-Yul;Kim, Bong-Gyu;Hwang, Sang-Hyun;Park, Deok-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.144-149
    • /
    • 2002
  • This paper presents a technique for real time multiprocessor parallel processing to develop an avionic system computer(ASC) which integrates the avionics control, navigation and fire control, cursive and raster graphic symbol generation into one line replaceable unit. The proposed method has optimal performance by adopting a logically asymmetric structure between four 32bit RISC processors based on the master-slave multiprocessing, a tightly coupled interaction level with the time shared common bus and global memory, and an efficient bus arbitration algorithm. The ASC has been verified through a series of flight tests. The relevant tests also have been rigorously conducted on the prototype ASC such as electrical test, environmental test, and electromagnetic interference test.

Faster Than Nyquist Transmission with Multiple Channel Codes (다중 채널 부호를 이용한 FTN 전송 시스템)

  • Kang, Donghoon;Kim, Haeun;Yun, Joungil;Lim, Hyoungsoo;Oh, Wangrok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.157-162
    • /
    • 2016
  • The performance of turbo-like codes highly depends on their frame size and thus, the bit error rate performance of turbo-like codes can be improved by increasing the frame size. Unfortunately, increasing the frame size of channel codes induces some drawbacks such as the increase of not only encoding and decoding complexity but also transmission and decoding latencies. On the other hand, a faster than Nyquist (FTN) transmission causes intentional inter-symbol interference (ISI) and thus, induces some correlation among the transmission symbols. In this paper, we propose an FTN transmission with multiple channel codes. By exploiting the correlation among the modulated symbols, multiple code frames can be regarded as a code frame with a lager frame size. Due to the inherent parallel encoding scheme of proposed scheme, parallel decoding can be easily implemented.

An Algorithm For Reducing Round Bound of Parallel Exponentiation (병렬 지수승에서 라운드 수 축소를 위한 알고리즘)

  • 김윤정
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.1
    • /
    • pp.113-119
    • /
    • 2004
  • Exponentiation is widely used in practical applications related with cryptography, and as the discrete log is easily solved in case of a low exponent n, a large exponent n is needed for a more secure system. However. since the time complexity for exponentiation algorithm increases in proportion to the n figure, the development of an exponentiation algorithm that can quickly process the results is becoming a crucial problem. In this paper, we propose a parallel exponentiation algorithm which can reduce the number of rounds with a fixed number of processors, where the field elements are in GF($2^m$), and also analyzed the round bound of the proposed algorithm. The proposed method uses window method which divides the exponent in a particular bit length and make idle processors in window value computation phase to multiply some terms of windows where the values are already computed. By this way. the proposed method has improved round bound.

FPGA-based Implementation of Fast Histogram Equalization for Image Enhancement (영상 품질 개선을 위한 FPGA 기반 고속 히스토그램 평활화 회로 구현)

  • Ryu, Sang-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1377-1383
    • /
    • 2019
  • Histogram equalization is the most frequently used algorithm for image enhancement. Its hardware implementation significantly outperforms in time its software version. The overall performance of FPGA-based implementation of histogram equalization can be improved by applying pipelining in the design and by exploiting the multipliers and a lot of SRAM blocks which are embedded in recent FPGAs. This work proposes how to implement a fast histogram equalization circuit for 8-bit gray level images. The proposed design contains a FIFO to perform equalization on an image while the histogram for next image is being calculated. Because of some overlap in time for histogram equalization, embedded multipliers and pipelined design, the proposed design can perform histogram equalization on a pixel nearly at a clock. And its dual parallel version outperforms in time almost two times over the original one.

Quadratic Sigmoid Neural Equalizer (이차 시그모이드 신경망 등화기)

  • Choi, Soo-Yong;Ong, Sung-Hwan;You, Cheol-Woo;Hong, Dae-Sik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.123-132
    • /
    • 1999
  • In this paper, a quadratic sigmoid neural equalizer(QSNE) is proposed to improve the performance of conventional neural equalizer in terms of bit error probability by using a quadratic sigmoid function as the activation function of neural networks. Conventional neural equalizers which have been used to compensate for nonlinear distortions adopt the sigmoid function. In the case of sigmoid neural equalizer, each neuron has one linear decision boundary. So many neurons are required when the neural equalizer has to separate complicated structure. But in case of the proposed QSNF and quadratic sigmoid neural decision feedback equalizer(QSNDFE), each neuron separates decision region with two parallel lines. Therefore, QSNE and QSNDFE have better performance and simpler structure than the conventional neural equalizers in terms of bit error probability. When the proposed QSNDFE is applied to communication systems and digital magnetic recording systems, it is an improvement of approximately 1.5dB~8.3dB in signal to moise ratio(SNR) over the conventional decision feedback equalizer(DEF) and neural decision feedback equalizer(NDFE). As intersymbol interference(ISI) and nonlinear distortions become severer, QSNDFE shows astounding SNR shows astounding SNR performance gain over the conventional equalizers in the same bit error probability.

  • PDF

Design and Analysis of a Digit-Serial $AB^{2}$ Systolic Arrays in $GF(2^{m})$ ($GF(2^{m})$ 상에서 새로운 디지트 시리얼 $AB^{2}$ 시스톨릭 어레이 설계 및 분석)

  • Kim Nam-Yeun;Yoo Kee-Young
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.4
    • /
    • pp.160-167
    • /
    • 2005
  • Among finite filed arithmetic operations, division/inverse is known as a basic operation for public-key cryptosystems over $GF(2^{m})$ and it is computed by performing the repetitive $AB^{2}$ multiplication. This paper presents a digit-serial-in-serial-out systolic architecture for performing the $AB^2$ operation in GF$(2^{m})$. To obtain L×L digit-serial-in-serial-out architecture, new $AB^{2}$ algorithm is proposed and partitioning, index transformation and merging the cell of the architecture, which is derived from the algorithm, are proposed. Based on the area-time product, when the digit-size of digit-serial architecture, L, is selected to be less than about m, the proposed digit-serial architecture is efficient than bit-parallel architecture, and L is selected to be less than about $(1/5)log_{2}(m+1)$, the proposed is efficient than bit-serial. In addition, the area-time product complexity of pipelined digit-serial $AB^{2}$ systolic architecture is approximately $10.9\%$ lower than that of nonpipelined one, when it is assumed that m=160 and L=8. Additionally, since the proposed architecture can be utilized for the basic architecture of crypto-processor and it is well suited to VLSI implementation because of its simplicity, regularity and pipelinability.

Implementation of RSA modular exponentiator using Division Chain (나눗셈 체인을 이용한 RSA 모듈로 멱승기의 구현)

  • 김성두;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.21-34
    • /
    • 2002
  • In this paper we propos a new hardware architecture of modular exponentiation using a division chain method which has been proposed in (2). Modular exponentiation using the division chain is performed by receding an exponent E as a mixed form of multiplication and addition with divisors d=2 or $d=2^I +1$ and respective remainders r. This calculates the modular exponentiation in about $1.4log_2$E multiplications on average which is much less iterations than $2log_2$E of conventional Binary Method. We designed a linear systolic array multiplier with pipelining and used a horizontal projection on its data dependence graph. So, for k-bit key, two k-bit data frames can be inputted simultaneously and two modular multipliers, each consisting of k/2+3 PE(Processing Element)s, can operate in parallel to accomplish 100% throughput. We propose a new encoding scheme to represent divisors and remainders of the division chain to keep regularity of the data path. When it is synthesized to ASIC using Samsung 0.5 um CMOS standard cell library, the critical path delay is 4.24ns, and resulting performance is estimated to be abort 140 Kbps for a 1024-bit data frame at 200Mhz clock In decryption process, the speed can be enhanced to 560kbps by using CRT(Chinese Remainder Theorem). Futhermore, to satisfy real time requirements we can choose small public exponent E, such as 3,17 or $2^{16} +1$, in encryption and verification process. in which case the performance can reach 7.3Mbps.

10Gbps Demultiplexer using SiGe HBT (SiGe HBT를 이용한 10Gbps 디멀티플렉서 설계)

  • 이상흥;강진영;송민규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4A
    • /
    • pp.566-572
    • /
    • 2000
  • In the receiver of optical communication systems, a demultiplexer converts to a single data stream with a highbit rate into several parallel data streams with a low bit rate. In this paper, we design a 1:4 demultiplexer using SiGe HBT with emitter size of 2x8um² The operation speed is 10Gbps, the rise and fall times of 20-80% are37ps and 36ps, respectively and the dissipation of power is 1.40W.

  • PDF