• 제목/요약/키워드: Bismuth Telluride Selenide

검색결과 2건 처리시간 0.02초

Influence of Annealing Temperature on Structural and Thermoelectrical Properties of Bismuth-Telluride-Selenide Ternary Compound Thin Film

  • Kim, Youngmoon;Choi, Hyejin;Kim, Taehyeon;Cho, Mann-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.304.2-304.2
    • /
    • 2014
  • Chalcogenides (Te,Se) and pnictogens(Bi,Sb) materials have been widely investigated as thermoelectric materials. Especially, Bi2Te3 (Bismuth telluride) compound thermoelectric materials in thin film and nanowires are known to have the highest thermoelectric figure of merit ZT at room temperature. Currently, the thermoelectric material research is mostly driven in two directions: (1) enhancing the Seebeck coefficient, electrical conductivity using quantum confinement effects and (2) decreasing thermal conductivity using phonon scattering effect. Herein we demonstrated influence of annealing temperature on structural and thermoelectrical properties of Bismuth-telluride-selenide ternary compound thin film. Te-rich Bismuth-telluride-selenide ternary compound thin film prepared co-deposited by thermal evaporation techniques. After annealing treatment, co-deposited thin film was transformed amorphous phase to Bi2Te3-Bi2Te2Se1 polycrystalline thin film. In the experiment, to investigate the structural and thermoelectric characteristics of Bi2Te3-i2Te2Se1 films, we measured Rutherford Backscattering spectrometry (RBS), X-ray diffraction (XRD), Raman spectroscopy, Scanning eletron microscopy (SEM), Transmission electron microscopy (TEM), Seebeck coefficient measurement and Hall measurement. After annealing treatment, electrical conductivity and Seebeck coefficient was increased by defect states dominated by selenium vacant sites. These charged selenium vacancies behave as electron donors, resulting in carrier concentration was increased. Moreover, Thermal conductivity was significantly decreased because phonon scattering was enhanced through the grain boundary in Bi2Te3-Bi2Te2Se1 polycrystalline compound. As a result, The enhancement of thermoelectric figure-of-merit could be obtained by optimal annealing treatment.

  • PDF

Thermoelectric properties of multi-layered Bi-Te/In-Se/Bi-Te thin film deposited by RF magnetron sputter

  • ;;;;;;김진상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.231-231
    • /
    • 2010
  • Thermoelectric properties of a multi-layered thin film, which was composed with indium selenide and bismuth telluride, were investigated. The structure of the layered thin film is Bi-Te /In-Se/Bi-Te and it was prepared on sapphire substrate by RF magnetron sputter using stoichiometric $Bi_2Te_3$ (99.9%) and $In_2Se_3$(99.99%) target at room temperature. Then, it was annealed at temperature range of 150 - $500^{\circ}C$ in Ar ambient. Structural characterizations were done using X-ray diffraction(XRD, BRUKER, D8, 60kW) and transmission electron microscopy (TEM, FEI, Tecnai, F30 S-Twin), respectively. Cross-section of multi-layer structure was observed by Scanning electron microscopy (SEM). The resistivity and Seebeck coefficient of these samples were also measured by conventional equipment at room temperature. The maximum value of power factor was $1.16\;{\mu}W/k^2m$ at annealing temperature of $400^{\circ}C$.

  • PDF