• Title/Summary/Keyword: Birkhoff polytope

Search Result 3, Processing Time 0.017 seconds

HOMOGENEOUS CONDITIONS FOR STOCHASTIC TENSORS

  • Im, Bokhee;Smith, Jonathan D.H.
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.371-384
    • /
    • 2022
  • Fix an integer n ≥ 1. Then the simplex Πn, Birkhoff polytope Ωn, and Latin square polytope Λn each yield projective geometries obtained by identifying antipodal points on a sphere bounding a ball centered at the barycenter of the polytope. We investigate conditions for homogeneous coordinates of points in the projective geometries to locate exact vertices of the respective polytopes, namely crisp distributions, permutation matrices, and quasigroups or Latin squares respectively. In the latter case, the homogeneous conditions form a crucial part of a recent projective-geometrical approach to the study of orthogonality of Latin squares. Coordinates based on the barycenter of Ωn are also suited to the analysis of generalized doubly stochastic matrices, observing that orthogonal matrices of this type form a subgroup of the orthogonal group.

CROSS-INTERCALATES AND GEOMETRY OF SHORT EXTREME POINTS IN THE LATIN POLYTOPE OF DEGREE 3

  • Bokhee Im;Jonathan D. H. Smith
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.91-113
    • /
    • 2023
  • The polytope of tristochastic tensors of degree three, the Latin polytope, has two kinds of extreme points. Those that are at a maximum distance from the barycenter of the polytope correspond to Latin squares. The remaining extreme points are said to be short. The aim of the paper is to determine the geometry of these short extreme points, as they relate to the Latin squares. The paper adapts the Latin square notion of an intercalate to yield the new concept of a cross-intercalate between two Latin squares. Cross-intercalates of pairs of orthogonal Latin squares of degree three are used to produce the short extreme points of the degree three Latin polytope. The pairs of orthogonal Latin squares fall into two classes, described as parallel and reversed, each forming an orbit under the isotopy group. In the inverse direction, we show that each short extreme point of the Latin polytope determines four pairs of orthogonal Latin squares, two parallel and two reversed.

CONVEX POLYTOPES OF GENERALIZED DOUBLY STOCHASTIC MATRICES

  • Cho, Soo-Jin;Nam, Yun-Sun
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.4
    • /
    • pp.679-690
    • /
    • 2001
  • Doubly stochastic matrices are n$\times$n nonnegative ma-trices whose row and column sums are all 1. Convex polytope $\Omega$$_{n}$ of doubly stochastic matrices and more generally (R,S), so called transportation polytopes, are important since they form the domains for the transportation problems. A theorem by Birkhoff classifies the extremal matrices of , $\Omega$$_{n}$ and extremal matrices of transporta-tion polytopes (R,S) were all classified combinatorially. In this article, we consider signed version of $\Omega$$_{n}$ and (R.S), obtain signed Birkhoff theorem; we define a new class of convex polytopes (R,S), calculate their dimensions, and classify their extremal matrices, Moreover, we suggest an algorithm to express a matrix in (R,S) as a convex combination of txtremal matrices. We also give an example that a polytope of signed matrices is used as a domain for a decision problem. In this context of finite reflection(Coxeter) group theory, our generalization may also be considered as a generalization from type $A_{*}$ n/ to type B$_{n}$ D$_{n}$. n/.

  • PDF