• Title/Summary/Keyword: Birkhoff integral

Search Result 5, Processing Time 0.02 seconds

A study on the Nonlinear Normal Mode Vibration Using Adelphic Integral

  • Huinam Rhee;Kim, Jeong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1922-1927
    • /
    • 2003
  • Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, which has 6$\^$th/ order homogeneous polynomial as a nonlinear term, is studied in this paper. The existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase space. In order to find the analytic expression of the invariant curves in the Poincare Map, which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, Whittaker's Adelphic Integral, instead of the direct integration of the equations of motion or the Birkhoff-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is revealed that the integral of motion by Adelphic Integral is essentially consistent with the one obtained from the B-G transformation method. The resulting expression of the invariant curves can be used for analyzing the behavior of NNM vibration in the Poincare Map.

A Study on the Nonlinear Normal Mode Vibration Using Adelphic Integral (Adelphic Integral을 이용한 비선형 정규모드 진동 해석)

  • Huinam Rhee;Joo, Jae-Man;Pak, Chol-Hui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.799-804
    • /
    • 2001
  • Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, which has 6th order homogeneous polynomial as a nonlinear term, is studied in this paper. The existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase space. In order to find the analytic expression of the invariant curves in the Poincare Map, which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, Whittaker's Adelphic Integral, instead of the direct integration of the equations of motion or the Birkhotf-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is revealed that the integral of motion by Adelphic Integral is essentially consistent with the one obtained from the B-G transformation method. The resulting expression of the invariant curves can be used for analyzing the behavior of NNM vibration in the Poincare Map.

  • PDF

On the Study of Nonlinear Normal Mode Vibration via Poincare Map and Integral of Motion (푸앙카레 사상과 운동적분를 이용한 비선형 정규모드 진동의 연구)

  • Rhee, Huinam
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.196-205
    • /
    • 1999
  • The existence. bifurcation. and the orbital stability of periodic motions, which is called nonlinear normal mode, in a nonlinear dual mass Hamiltonian system. which has 6th order homogeneous polynomial as a nonlinear term. are studied in this paper. By direct integration of the equations of motion. Poincare Map. which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space. is obtained. And via the Birkhoff-Gustavson canonical transformation, the analytic expression of the invariant curves in the Poincare Map is derived for small value of energy. It is found that the nonlinear system. which is considered in this paper. has 2 or 4 nonlinear normal modes depending on the value of nonlinear parameter. The Poincare Map clearly shows that the bifurcation modes are stable while the mode from which they bifurcated out changes from stable to unstable.

  • PDF

Three body problem in early 20th century (20세기초의 삼체문제에 관해서)

  • Lee, Ho Joong
    • Journal for History of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.53-67
    • /
    • 2012
  • Today, it is necessary to calculate orbits with high accuracy in space flight. The key words of Poincar$\acute{e}$ in celestial mechanics are periodic solutions, invariant integrals, asymptotic solutions, characteristic exponents and the non existence of new single-valued integrals. Poincar$\acute{e}$ define an invariant integral of the system as the form which maintains a constant value at all time $t$, where the integration is taken over the arc of a curve and $Y_i$ are some functions of $x$, and extend 2 dimension and 3 dimension. Eigenvalues are classified as the form of trajectories, as corresponding to nodes, foci, saddle points and center. In periodic solutions, the stability of periodic solutions is dependent on the properties of their characteristic exponents. Poincar$\acute{e}$ called bifurcation that is the possibility of existence of chaotic orbit in planetary motion. Existence of near exceptional trajectories as Hadamard's accounts, says that there are probabilistic orbits. In this context we study the eigenvalue problem in early 20th century in three body problem by analyzing the works of Darwin, Bruns, Gyld$\acute{e}$n, Sundman, Hill, Lyapunov, Birkhoff, Painlev$\acute{e}$ and Hadamard.