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ABSTRACT

The existence, bifurcation, and the orbital stability of periodic motions, which is called
nonlinear normal mode, in a nonlinear dual mass Hamiltonian system, which has 6th order
homogeneous polynomial as a nonlinear term, are studied in this paper. By direct integration of
the equations of motion, Poincare Map, which is a mapping of a phase trajectory onto 2
dimensional surface in 4 dimensional phase space, is obtained. And via the Birkhoff-
Gustavson canonical transformation, the analytic expression of the invariant curves in the
Poincare Map is derived for small value of energy. It is found that the nonlinear system,
which is considered in this paper, has 2 or 4 nonlinear normal modes depending on the value
of nonlinear parameter. The Poincare Map clearly shows that the bifurcation modes are
stable while the mode from which they bifurcated out changes from stable to unstable.
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modes occuring in linear systems t{o nonlinear

1. Introduction systems(l). A vibration in a Nonlinear Normal

Mode (NNM) is one that satisfies the following

R. M. Rosenburg extended the notion of normal properties, especially in two degree of freedom
(DOF) systems,

* 33, FFHYIEF A A2 HAN LTS (a) The motion of each mass has the same
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period.

{(b)During any time interval of one period,
both masses simultaneously pass through their
equilibrium configuration exactly twice (zero
potential energy) and the velocities of both
masses simultaneously vanish (zero kinetic
ene-zy) precisely twice.

Tte existence’”, the bifurcation®®, and the
stabilities'? of NNMs have been studied in
Nnums=rous papers,

Ir. this paper we will consider a nonlinear 2
DOF Hamiltonian system R in Fig, 1. It is
asswined that the system R has unit masses
and the restoring force F for the anchor springs
is given by F=d+kd’. while for the coupling
spring F=d®. Therefore, the Hamiltonian of
the system R consists of H(2) and H(6) ( H(s)
is & homogeneous polynomial of degree s.) as
follcrvs -

= 2+ +25+5%) 1)

+ =2+ E (4 )

where y;= x;.

I the previous works(a'S), some Hamiltonian
systems, which are composed of H(2) and
H(si , were investigated, and it was revealed
that these systems have 2 or 4 NNMs and each
NNM may be either stable or unstable, Now, we
will investigate the effect of the H(6) on the
NNMs by adopting the system R. For the study
on the existence of normal modes and their
stabiity in our nonlinear system R, the

techrique of Poincare Map®™® is utilized in this
pape. We provide two procedures to obtain

Poircare Map for the system R. The first one is

’___>X1 > X,

Fig. 1 The System R

the direct integration of the equations of motion.
The second procedure is based on using the
Birkhoff-Gustavson canonical transformation'***?
to obtain the approximation for the Poincare
Map.

These method offer some advantagesm over
the Floquet theory approach. Specifically. these
methods does not require linearization in the
neighborhood of any particular motion and hence
they vyield a global picture of the motion flow.
Thus, they not only permit conclusions to be
drawn about the stabilily of NNMs but they
provide insight into the dynamical structure of
the system. Moreover this method is successful
in determining the stability for the systems for
which the Floquet theory approach {fails to
predicts the stability for a given NNM®.

2. Poincare Map

In the case of 2 DOF Hamiltonian systems the
phase space is 4 dimensional. Then it is very
difficult to picture trajectories of the system
since it is impossible to picture 4 dimensions.
The idea proposed by H. Poincare provides us
with a method of peering into 4 dimensional
space. This idea is well-known as the Poincare
Map. Let us start with R*(x;, %5, ¥, ¥.). The
motion is restricted to a 3 dimensional space by
Hamiltonian H=#4, ie., each energy level set is
3 dimensional, If another integral (called an
integral of motion or a first integral in this
paper) exists, then the 3 dimensional manifold
H=h is fibered by 2 dimensional tori and then
can be represented in ordinary 3 dimensional
space as a family of concentric tori. We now
construct a 2 dimensional plane in this 3
dimensional surface by slicing the surface with the
x1 =0 hyperplane. A phase trajectory beginning in
such a plane returns to it after making a circuit
around the torus. In this way we can make a
mapping onto itself, which is known as Poincare
Map®®. The 2 dimensional (x,,¥,) surface

{x;=0} (N {H=h}is the surface of section. We
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look at successive intersections of trajectories
with this surface of section. It should be noted
that periodic orbits correspond to fixed points of
this map. It is also noted that if a periodic
motion is orbitally stable then the (x,,y,;) plane
will contain a fixed point surrounded by
concentric circles, ie., center. If a periodic motion
is unstable it look like a saddle point in the

(x2,v;) plane.

To insure the trajectories actually pierce the
surface of section it is required that when we slice
the H=h surface we make a tranversal (not
tangential) cut. The trajectory (xy,x3, ¥y, ¥2)
will fail to intersect the surface of section
tranversally whenever the normal to the surface
is perpendicular to the tangent of the trajectory.
Thus whenever

(xl,x2,y1,y2) (1,0,0,0)=0

or x;=y =0, the tranversality condition is
violated. Thus if is further noted that we require
either ¥, >0 always when x>0 or <0
always when x;=0. This restriction is to insure
that the trajectory always pierces the surface of
section from the same side. If we want to
numerically obtain a picture of the Poincare
Map for fixed £k, it is required o proceed direct
integration scheme (forward integration) in the
following manner :

(a) Let x;=0.

(b) Use H=h to obtain y,= (x5, 35, k).

(c) Select initial point (x,¥%;) and integrate
equations of motion wuntii x= 0 and
1> 0 xp=x3, y,=y;.

(d) Using =x3, v5, repeat above steps to get
next points.

(e) In order to get different trajectories it is
required to start with different initial points.

By following the above procedure we obtain
results shown in Figs. 2~6. All the figures are
bounded by y,=y(xs, ¥, k) =0. It is important
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Fig. 2 Poincare map by forward integration for
h =001, k& =4

Forward integral
h=0
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Fig. 3 Poincare map by forward integration for
=01, & =4

Forward integral

Fig. 4 Poincare map by forward integration for
h =1,k =4
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Fig. 5 Poincare map by forward integration for
h =10, & =4

Forward integral
h=100, k=4
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2

Fig. 6 Poincare map by forward integration for
h =100, k=4

to rofice that for small values of energy the
piclure is divided into invariant curves. This
meails that the totality of trajectories forms a
one parameter family of curves which fills the

reg.cn inside the bounding curve y, = 0. These

inva-iant curves represent invariant regions in
spaz2. The fact that the space is divided into
inva-iant regions suggests the existence of a first
integral, which is independent of energy
consarvation H=h, for small values of energy.
Notice from Figs. 2 ~ 6 that as the energy #
increases the invariant curves seem to disinte-
grai:. This is related to a series of bifurcation
which occurs as the energy increases(g'w). This

represents a type of motion known as ergodic or
chaotic motion.

In this paper we would like to find an analytic
expression for the invariant curves in the
Poincare Map for small values of energy. In
order to do this, we look for an approximate first
integral  f(x;, x5, 1, ¥;) =const. independent of

Hamiltonian H=%. With the analytic forms of
the invariant curves in the Poincare Map, we will
discuss the existence, stability and bifurcation of
the NNMs depending on the wvalue of nonlinear
parameter £ for our nonlinear system R. In the
next section we obtain the approximate first
integral independent of Hamiltonian.

3. Integral of Motion

In this section we will discuss a method that
has Dbeen developed for constructing first
integrals of a Hamiltonian system formally. The
basic idea is to try to transform the Hamiltonian
by using canonical transformation until the
Hamiltonian has the form of uncoupled linear
oscillators plus higher order terms.

The method is divided into two cases. The
first case is the so-called nonresonance case,
which means that the

frequencies are not commensurable. Birkhoff
(12)

natural
an

linearized
considered this problem. Gustavson extended
this work by considering Hamiltonians with
internal resonance, which means that the
linearized natural frequencies are commensurable,
i.e., rationally dependent. Qur system R is in the
latter case (1 to 1 resonance case).

Let us start with the system of differential
equations

. _ dH
x="5y (x, 3,

y =2 (5, (2)

where x and y are the generalized coordinate
and momentum vectors, respectively. These
equations are generated by a Hamiltonian,

H(x,y)=H(Q) (x,y)+ H3) (x,y)+-, (3)
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a power series in x and y which is convergent
in the neighborhood of the origin. The
assumption that the Hamiltonian begins with
quadratic terms implies that the origin x=0, ¥
=0 is an equlibrium point of the system (2). In
addition it is restricted that H(2) (x,y) is a
positive definite quadratic form. In general we
can write H(2) (x,y) in the form

H2)(x,y)= Vi;:l 3 (4)

where a,s (positive quantities) represent the
natural frequencies and #» is the number of
DOF. The higher order terms of H plays the
role of coupling the oscillators.

For the purpose of explanation we will
consider a Hamiltonian of the form

H=HQ2)(x,y)+H(6)(x,y) (5)

since the system R is in this category.
The first step is a canonical tranformation
(x,y)—>(&,7) generated by :

S(x,p)=2xn+ W6)(x,79):
= x+—m)-(x 7),

y=pt 2By (e)

with WA(6) (x,7) a homogeneous polynomial of
degree 6.

As a first approximation we neglect terms
higher than O(6). Therefore we have

W(6) (x, 7) = W(6) (& 1), (7)
QWO (1, 5) =2 (¢ ), (8)
H®6)(x,y)=H(& 7)), (9)

and

H2)(xn)= Z2E+D Baw (g

(g0 - e-og0)

Thus we have a new Hamiltonian,

H(E, n) = H(2)(&, 5) + DWK6)(&, n) + H(6) (&, n),
(11)
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where

= 2 a,(n, 5 aé )—¢&, (m ) (.2)

So far, we have not specified the function
W(6). We now wish to choose W(6)(&, ) so
that

DW(B) (& D+H(B)(&D=0. (13)

Then we will have from H{(E& n=HQXE n),
»n independent first integrals of the form

—‘-’2—"(éi+nﬁ),u=1,2,3.---,n. (14)

Since both W(s) and H(s) are homogeneous
polynomials of degree s in 2#xn variables, they
can be considered as elements of a function
space under the usual addition and scalar
multiplication. The dimension m of the space is

_ @n+s—D!
=D (15)

The monomial terms & 7', |ki+1Il=s, |il= t\

where form a basis for this vector space. Therefore.
for the system R, H(6)and W(6) are
homogeneous polynomials consisting of at tnost
84 terms ( n =2, s=86).

There is an isormorphism between the vector
space of homogeneous polynomials of degree 6 in

four variables and R*. The components of the
vectors in R™ correspond to the coefficients
Ci,Cy, Gy, Cy of the basis vectors in the
function space. Refer to Table 1. In Table 1 the
(B,7,0,7)
& &, 1. 7

In order to solve Eq. (13) we define the

notation represents the vector

second canonical transformation :

& m—(0,q):
&, = 715 (g+p), (16)

7, = 715(4—115)
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Table 1 Isomorphism between R* and homogeneous polynomials of degree 6 (Cx? xJ y7 v3)

Cl{0006) Ci0015) Cy0024) C(0033) Cs(0042) Ce(0051)
C:(0060) Cg(0105) Co(0114) Co0123) Cu(0132) Cp(d0141)
Ci(0150) Cu(0204) Cu(0213) Cgl0222) Cp(0231) Cul0240)
Ce{0 303) Cu(0312) Cu(0321) Cp(0330) Cu(0402) Cu(d411)
Ci(0420) Cx(0501) Cu(0510) Cg(0600) Cu(l1005 Cyp(l 01 4)
Ca(1023) Cp(1032) Cu(1041) Cy(1050) Cy(1104) Cy(1113)
Cyi(1122) Cp(1131) Cyu(1140) Cp(1203) Cu(1212) Cp(l221)
Ca(1230) Cy(1302 Cu(1311) Ceg(l320) Cp(l401) Cell 410)
Co(l1500) Cq(2004) C(2013) Cpi2022) Cyu(2031) Cyy(2040)
Css(2103) Cy(2112) Cp(2121) Cu(2130) Cp(2202) Cgl2211)
Ca(2220) Cp(2301) Cu(2310) Cu(2400) Cs(3003) Ce(3012)
Ca(3021) Cug(3030) Cu(3102) Cp(3111) Cp(3120) Cp3201)
Ci(3210) Cu(3300) Cs(4002) Cp(4011) Cn(4020) Cr(4101)
Cr(4110) Cp(4200) Cy(5001) Cp(5010) Cgg(5100) Cg(6000)

which diagonalizes the matrix D.
Thenr D of Eq. (13) becomes

A : 9 __,_9d
jT= glzay(q,, ) (17)
And H(2) (£, 7) becomes
K(2) (a,0) = 2 iauna,. (18)
givir g us the new Hamiltonian
5(q,p)=K(2)(q,p)
(19)

+ EW6) (g, )+ K (6) (g, ),

K(6) (gq,p) is
terras of ¢ and p.

whee K(6) (£,5) written in

Let us now assume we have 2 DOF. It is
shoan that FE is a diagonal matrix with
diagnnal element,

in(f—o)+ia(y—1). (20)
We 10w try to choose K (6) (g,5) so that
ZW(6) (g, 0+ K (6) (g, =0. (21)

It stould be noted that E is a singular matrix.
Therefore Eq. (21) will not have a solution

K(6) (g,p) lies in the range of E.
However, we can write that

EW(6)(q,p)=—PK(6)(q,0). (22)

unless

where P is the projection operator onto the
range of E. PK(6)(gq,p) may be thought as

PK(G) (q,P)= K(6) (Q,ﬂ)_Nl(G) ((I,D) (23)
— N,(6) (g, p)

where N;(8)[N,(6)] is the projection of K(8)

on the null space of E due to nonresonance
[resonance]. It has been used that since E is a

singular matrix, the range and null space of E
are complementary. For the system R, the bases

for the N;(6) and N,(6)

following vectors :

consist of the

N(B): Cwadp}, Cud 50105, Csdiatipn
Ces a3 b1
Ny(B): Cua3 103, Cuds Bl b2, Cn a8,
Coa 5 0ip, Cnaids b}, Cssai az 13, o)
Csdia 01 05, Cssdiaz4), Ces i 03,
Ces @3 1105, Cardi 15 s
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Thus our new Hamiltonian is of the form

K(q,p)=K(2)(a,0)+ N (6) (¢,9) +N,(a,p), (25)

where K(2)(g,p) and N, (6)(q,p) is a function
of only the product terms 4y, p,, but
N,(6)(q,p) is not. Therefore, if in the
nonresonance case, that is, N,(6) (g, p)=0, then
q,.b, can be chosen as the first integrals.

We can determine an approximate first
integral as follows. First it is noted that

EN,(6)(g,p)=0 and EN,(6)(g,p)=0. Also
we see by inspection that EK(2)(g,p)=0
Therefore,
EK(q,p)= EK(2)(q,p)+ EN(6)(q,p)
+EN,(6) (,9)=0 '

Next it can be shown that K(2)(g,p) is a first
integral as follows :

K@) (a.0) = Zialha+i)

— . oK ﬂ{_

= glzau( oK 4+ 3K )(27)
=—FEK=0

Since K(2) and K are first infegrals, we also

have that

K(q,p)—K(2)(q,p)=N,(q,0)+ N,(q,p) (28)

is a first integral. Since we neglect terms of
degree higher than 6, we need only fransform
from (g¢,p)—(&,7), which means that we do
not need to calculate WA6)(g,p) to find the
approximate integral.

By the above method we can obtain an
approximate first integral for the system R. The
integral is

L+ DU+ 5D+ + oD +5D)?)

+ —9%(/«3+ D {2+ yD%+ (#5439}

+ 15_6{ (122 319"~ Gy xa + yoy)? }
(E+ x5+ 31 +55)
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- .458—{ (xl _39613’1)2 (xz 3x23’%)2

+ (323, — ) (3x3y,— v3) }
— —i—%(xlxz + y19) (22 + y1) (x5+32)

— 5 Gam ) (R + D2+ (4594 = 6
(29).

To check that Eq. (29) is indeed a first integral,
we need to differentiate Eq. (29) with respect

to time. We can find G=0 if we neglect terms
of O(8) and use the fact that

it %= 2, (30)
y1=—x1+0(5), y2=—-x2+0(5).

Therefore the expression given by Eq. (29) is
indeed a first integral up to terms of O(6).

4. Invariant Curves in the Poincare Map
Surface of Section

The Birkhoff-Gustavson approximate integral
of Eq. (29) will be used to find the invariant
curves of the Poincare Map.

Let us start with the Hamiltonian of Eq. (1)
and the first integral of Eq. (29). We form the
surface of section from {x;=0}N{H=
Successive intersections of trajectories with this
two dimensional surface of section (x,,¥,) form

invariant curves. We can analytically determine

v

these invariant curves as follows
{yl(x2+y§) +y3xE + ¥
+§5§(k+ D{3+ (5 +33)°)

——S—(y?yz SN+ + 3 48 $}(3x5y2~ 33)

6 yxyz(x2+yz)+ 6 J’1yz{Y1+(X2+J’2) }=G,

(31)
where

yl\/éh—% xg—xg— y%.

It should be noted that all NNMs appear as
fixed points of the Poincare Map which lies on
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the y, axis. This follows from the fact that a assumed that the system R has only SNMs.
NNM is a periodic motion in which both masses For the equations of motion
simualtaneously pass through their equilibrium .
q=—-2Y ang 5=--2F (33)
pont. Thus for a NNM, it is required that n= 0x, and - xp= dxy
4G (4 y,)=0 Loow s kg6, 6,1 5
By, (02 where V=—2—(x1+xz)+€(x1+xz)+§(x1_xz) .
1
= 2 (53— W20k~ Dby, + 5552k —3D) ?
_1
+(2h—y§) 2(3’%—2}0’%4—41’12)] (32) (c) totks
04— _
Fron Eq. (32) we find that there are at least 2
NNMs, y,= +Vh, for any given # and % ., and
0.0— —

tha  in addition [ ]=0 in Eq. (32) may have e
anaher roots. The roots independent of &
correspond to the two Similar Normal Modes

(S\Ms), x3=cx,, ¢= %1, which means in-phase o4 ]
and out-of-phase modes, respectively. Next we L L i
are supposed to solve [ 1=0 in Eq. (32). It is 04 00 04
X
2
(a) h=0.1, k=4
0.4} - 04— ]
0.0 — - —
o r— - 0.0
04— — 0.4(— —
1 ] ] 1 | ]
04 0.0 0.4 0.4 0.0 0.4
Xz x2
(b) h=0.1. k=8 (e) h=D.1. k=0
04— . 04— _
i 0.0 __1 . 0.0+ —
0.4 (— ]
04 -
| | |
0.4 0.0 04
)(2 X,

S, 19991/203
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(t) h=0.1, k=.1
04— —
0o —
o
0.4 — —
l | |
0.4 a.0 0.4
X
2
h=0.1, k=
(® :
0.4}— A —
/—\\
00 —
>
04— —
| i ]

Fig. 7 Poincare map by the integral of motion for
h =01: (a) k=4 (b) k=8 (¢c) k=9
(d) £=10 (e) k=0 (f) k=-1 (g) k=-2.

to have a solution of the form x,=cx), it is

necessary and sufficient® that
(=1 + (k=4 +6c+(k—4)c+1)}=0. (34)

From Eq. (34), when 0 < k=< 8 there are only 2
SNMs 2x,=+x;. An additional pair of SNMs
bifurcate out of the x3=—x;, when £ 8.
Another pair of SNMs bifurcate out of the
x,=x, mode when £<(0. We can easily see
that the roots of Egs. (32) and (34) are
identical with the help of computer. Therefore it
is clear that the system R has only SNMs,
which are at most 4.

To get the Poincare Map we can plot the
invariant curves on the (x;,y;) plane as shown

204/ 2XSSEEX/A 9 A A1 &, 19999

in Fig. 7. By comparing Fig. 7(a) with Fig 3
for k=4, it is remarkable to note that they are
matching very well. In Fig. 7 the nonlin=ar
parameter % is varied. As expected from “he
Eq. (34), when 0 < k£<8 there exist 2 NNMs,
in-phase and out-of-phase. We can clearly see
that the two modes are stable because they are
center points in the Poincare Map. When £ 0.
as shown in Figs. 7, two additional modes
bifurcate out of the iIn-phase mode. The
bifurcation modes are stable while the orig.nal
in-phase mode changes from stable to unstable,
When &> 8 two additional modes bifurcate out
of the out-of-phase mode. The bifurcation
modes are stable while the original out-of-phase
mode changes from stable to unstable.

5. Conclusions

The dynamical structure of a nonlinear dual
mass coupled oscillator, of which Hamiltonian
consists of 2" and 6™ order homogeneous
polinomials, was investigaled by picturing the
Poincare Map by direct integration of the
equations of motion, and also by generating an
approximation for the Poincare Map via
Birkhoff-Gustavson canonical transformation for
small values of energy. In particular the
existence and the stability of Nonlinear Normal
Mode have been studied. It is found that the
system considered in this paper has 2 or 4
Similar Nonlinear Normal Modes depending on
the valus of the nonlinear parameter k. The
bifurcating modes enter as stable while the
mode from which they bifurcated changes from
stable to unstable.
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